首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study periodic linear systems on periodic time scales which include not only discrete and continuous dynamical systems but also systems with a mixture of discrete and continuous parts (e.g. hybrid dynamical systems). We develop a comprehensive Floquet theory including Lyapunov transformations and their various stability preserving properties, a unified Floquet theorem which establishes a canonical Floquet decomposition on time scales in terms of the generalized exponential function, and use these results to study homogeneous as well as nonhomogeneous periodic problems. Furthermore, we explore the connection between Floquet multipliers and Floquet exponents via monodromy operators in this general setting and establish a spectral mapping theorem on time scales. Finally, we show this unified Floquet theory has the desirable property that stability characteristics of the original system can be determined via placement of an associated (but time varying) system?s poles in the complex plane. We include several examples to show the utility of this theory.  相似文献   

2.
Network flows over time form a fascinating area of research. They model the temporal dynamics of network flow problems occurring in a wide variety of applications. Research in this area has been pursued in two different and mainly independent directions with respect to time modeling: discrete and continuous time models. In this paper we deploy measure theory in order to introduce a general model of network flows over time combining both discrete and continuous aspects into a single model. Here, the flow on each arc is modeled as a Borel measure on the real line (time axis) which assigns to each suitable subset a real value, interpreted as the amount of flow entering the arc over the subset. We focus on the maximum flow problem formulated in a network where capacities on arcs are also given as Borel measures and storage might be allowed at the nodes of the network. We generalize the concept of cuts to the case of these Borel Flows and extend the famous MaxFlow-MinCut Theorem.  相似文献   

3.
The present paper deals with the identification and maximum likelihood estimation of systems of linear stochastic differential equations using panel data. So we only have a sample of discrete observations over time of the relevant variables for each individual. A popular approach in the social sciences advocates the estimation of the “exact discrete model” after a reparameterization with LISREL or similar programs for structural equations models. The “exact discrete model” corresponds to the continuous time model in the sense that observations at equidistant points in time that are generated by the latter system also satisfy the former. In the LISREL approach the reparameterized discrete time model is estimated first without taking into account the nonlinear mapping from the continuous to the discrete time parameters. In a second step, using the inverse mapping, the fundamental system parameters of the continuous time system in which we are interested, are inferred. However, some severe problems arise with this “indirect approach”. First, an identification problem may arise in multiple equation systems, since the matrix exponential function denning some of the new parameters is in general not one‐to‐one, and hence the inverse mapping mentioned above does not exist. Second, usually some sort of approximation of the time paths of the exogenous variables is necessary before the structural parameters of the system can be estimated with discrete data. Two simple approximation methods are discussed. In both approximation methods the resulting new discrete time parameters are connected in a complicated way. So estimating the reparameterized discrete model by OLS without restrictions does not yield maximum likelihood estimates of the desired continuous time parameters as claimed by some authors. Third, a further limitation of estimating the reparameterized model with programs for structural equations models is that even simple restrictions on the original fundamental parameters of the continuous time system cannot be dealt with. This issue is also discussed in some detail. For these reasons the “indirect method” cannot be recommended. In many cases the approach leads to misleading inferences. We strongly advocate the direct estimation of the continuous time parameters. This approach is more involved, because the exact discrete model is nonlinear in the original parameters. A computer program by Hermann Singer that provides appropriate maximum likelihood estimates is described.  相似文献   

4.
A functional method of localization of invariant compact sets, which was earlier developed for autonomous continuous and discrete systems, is generalized to continuous dynamical systems with perturbations. We describe properties of the corresponding localizing sets. By using that method, we construct localizing sets for positively invariant compact sets of the Lorenz system with a perturbation.  相似文献   

5.
In this paper, a new complete and simplified proof for the Husainov-Nikiforova Theorem is given. Then this theorem is generalized to the case where the coefficients may have different signs as well as nonlinear systems. By these results, the robust stability and the bound for robustness for high-order interval discrete dynamical systems are studied, which can be applied to designing stable discrete control system as well as stabilizing a given unstable control system.  相似文献   

6.
We provide explicit closed form expressions for strict Lyapunov functions for time-varying discrete time systems. Our Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters. This provides a discrete time analog of our previous continuous time Lyapunov function constructions. We also construct explicit strict Lyapunov functions for systems satisfying nonstrict discrete time analogs of the conditions from Matrosov’s Theorem. We use our methods to build strict Lyapunov functions for time-varying hybrid systems that contain mixtures of continuous and discrete time evolutions.  相似文献   

7.
Summary. Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane. Received January 9, 2001; accepted January 2, 2002 Online publication April 8, 2002 Communicated by E. Doedel Communicated by E. Doedel rid="  相似文献   

8.
A determination of mechanical properties of the real material systems under dynamical excitations is a very complex problem. The real system can be described by continuous model as well as a discrete model with a finite number of degree-of-freedom. Some mechanical systems like beams, rods, strings, tow-lines etc. have so-called chain-like configuration and may be treated as the dynamical one-dimensional cascade systems. In this paper, an identification method of internal interaction force, which can be arbitrary selected in discrete chain-like non-linear system, is presented. The method was tested on example of a two-mass system in which the interaction forces were modeled by spring-damper elements in a non-parallel arrangement. In experiment some non-sinusoidal complex loads were applied. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We investigate solution techniques for numerical constraint-satisfaction problems and validated numerical set integration methods for computing reachable sets of nonlinear hybrid dynamical systems in the presence of uncertainty. To use interval simulation tools with higher-dimensional hybrid systems, while assuming large domains for either initial continuous state or model parameter vectors, we need to solve the problem of flow/sets intersection in an effective and reliable way. The main idea developed in this paper is first to derive an analytical expression for the boundaries of continuous flows, using interval Taylor methods and techniques for controlling the wrapping effect. Then, the event detection and localization problems underlying flow/sets intersection are expressed as numerical constraint-satisfaction problems, which are solved using global search methods based on branch-and-prune algorithms, interval analysis and consistency techniques. The method is illustrated with hybrid systems with uncertain nonlinear continuous dynamics and nonlinear invariants and guards.  相似文献   

10.
We consider the identification of a switched linear system which consists of linear sub-models, with a rule that orchestrates the switching mechanism between the sub-models. Taking a set of switched linear systems and using a state space framework, we show that it is possible to combine subspace methods with mixed integer programming for system identification. The states of the system are first extracted from input–output data using sub-space methods. Once the state variables are known, the switched system is re-written as a mixed logical dynamical (MLD) system and the model parameters are calculated for via mixed integer programming. We report an example at the end of this paper together with simulation results in the presence of noise.  相似文献   

11.
In this paper, we study periodic linear Volterra systems on periodic time scales which include not only discrete and continuous dynamical systems but also systems with a mixture of discrete and continuous parts (e.g. hybrid dynamical systems). We discuss the relationship between the solution of the Volterra integro-dynamic system and the limiting equation of the corresponding system. We also develop integrability conditions of the resolvent of Volterra integro-dynamic systems.  相似文献   

12.
建立以连续分段线性函数为参量的间歇发酵非线性动力系统,证明该动力系统的主要性质及解的存在性.以实验数据拟合得到的光滑曲线为依据,提出了连续分段线性函数为优化变量的辨识模型,论述可辨识性.依状态变量与辨识函数的相关性,构造求解辨识模型的优化算法,并给出优化算法的收敛性分析及数值结果.  相似文献   

13.
We consider the localization problem for the invariant compact sets of a discrete dynamical system with perturbation and control, that is, the problem of constructing domains in the system state space that contain all invariant compact sets of the system. The problem is solved on the basis of a functional method used earlier in localization problems for time-invariant continuous and discrete systems and also for control systems. The properties of the corresponding localizing sets are described.  相似文献   

14.
《Journal of Complexity》2005,21(4):447-478
This paper is driven by a general motto: bisimulate a hybrid system by a finite symbolic dynamical system. In the case of o-minimal hybrid systems, the continuous and discrete components can be decoupled, and hence, the problem reduces in building a finite symbolic dynamical system for the continuous dynamics of each location. We show that this can be done for a quite general class of hybrid systems defined on o-minimal structures. In particular, we recover the main result of a paper by G. Lafferriere, G.J. Pappas, and S. Sastry, on o-minimal hybrid systems. We also provide an analysis and extension of results on decidability and complexity of problems and constructions related to o-minimal hybrid systems.  相似文献   

15.
16.
In 1978, Marotto generalized Li–Yorke’s results on the criterion for chaos from one-dimensional discrete dynamical systems to n-dimensional discrete dynamical systems, showing that the existence of a non-degenerate snap-back repeller implies chaos in the sense of Li–Yorke. This theorem is very useful in predicting and analyzing discrete chaos in multi-dimensional dynamical systems. Yet, besides it is well known that there exists an error in the conditions of the original Marotto Theorem, and several authors had tried to correct it in different way, Chen, Hsu and Zhou pointed out that the verification of “non-degeneracy” of a snap-back repeller is the most difficult in general and expected, “almost beyond reasonable doubt,” that the existence of only degenerate snap-back repeller still implies chaotic, which was posed as a conjecture by them. In this paper, we shall give necessary and sufficient conditions of chaos in the sense of Li–Yorke for planar monotone or competitive discrete dynamical systems and solve Chen–Hsu–Zhou Conjecture for such kinds of systems.  相似文献   

17.
We study the dynamical behavior of a discrete time dynamical system which can serve as a model of a learning process. We determine fixed points of this system and basins of attraction of attracting points. This system was studied by Fernanda Botelho and James J. Jamison in [A learning rule with generalized Hebbian synapses, J. Math. Anal. Appl. 273 (2002) 529-547] but authors used its continuous counterpart to describe basins of attraction.  相似文献   

18.
In this paper we study direct and inverse problems for discrete and continuous skew‐selfadjoint Dirac systems with rectangular (possibly non‐square) pseudo‐exponential potentials. For such a system the Weyl function is a strictly proper rational matrix function and any strictly proper rational matrix function appears in this way. In fact, extending earlier results, given a strictly proper rational matrix function we present an explicit procedure to recover the corresponding potential using techniques from mathematical system and control theory. We also introduce and study a nonlinear generalized discrete Heisenberg magnet model, extending earlier results for the isotropic case. A large part of the paper is devoted to the related discrete systems of which the pseudo‐exponential potential depends on an additional continuous time parameter. Our technique allows us to obtain explicit solutions for the generalized discrete Heisenberg magnet model and evolution of the Weyl functions.  相似文献   

19.
The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) is a complex bioprocess due to the multiple inhibitions of substrate and products onto the cell growth. In consideration of the fact that both the inhibition mechanisms of 3-hydroxypropionaldehyde (3-HPA) onto the cell growth and the transport systems of glycerol and 1,3-PD across the cell membrane are still unclear, we consider 72 possible metabolic pathways, and establish a novel mathematical model which is represented by an eight-dimensional nonlinear dynamical system. The existence, uniqueness, continuous dependence of solutions to the system and the compactness of the solution set are explored. On the basis of biological robustness, we give a quantitative definition of robustness index of the intracellular substances. Taking the robustness index of the intracellular substances together with the relative error between the experimental data and the computational values of the extracellular substances as a performance index, a parameter identification model is proposed for the nonlinear dynamical system, in which 43848 continuous variables and 1152 discrete variables are involved. A parallel particle swarm optimization — pathways identification algorithm (PPSO-PIA) is constructed to find the optimal pathway and parameters under various experiments conditions. Numerical results show that the optimal pathway and the corresponding dynamical system can describe the continuous fermentation reasonably.  相似文献   

20.
Multidrug resistance consists of a series of genetic and epigenetic alternations that involve multifactorial and complex processes, which are a challenge to successful cancer treatments. Accompanied by advances in biotechnology and high-dimensional data analysis techniques that are bringing in new opportunities in modeling biological systems with continuous phenotypic structured models, we investigate multidrug resistance by studying a cancer cell population model that considers a multi-dimensional continuous resistance trait to multiple drugs. We compare our continuous resistance trait model with classical models that assume a discrete resistance state and classify the cases when the continuum and discrete models yield different dynamical patterns in the emerging heterogeneity in response to drugs. We also compute the maximal fitness resistance trait for various continuum models and study the effect of epimutations. Finally, we demonstrate how our approach can be used to study tumor growth with respect to the turnover rate and the proliferating fraction. We show that a continuous resistance level model may result in different dynamics compared with the predictions of other discrete models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号