首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He II-ultraviolet photoelectron spectra (hv = 40.8 eV) from a carbon monoxide layer adsorbed on a Cu(111) surface exhibit two peaks at 8.5 and 11.6 eV below the Fermi level and a weaker maximum centered at about 13.5 eV. The emission from the Cu d-band is markedly suppressed after adsorption. The results are discussed in terms of the recent models for assigning the UPS peaks observed after adsorption of CO on transtion metals  相似文献   

2.
High resolution, electron impact excited, carbon Auger spectra of ethylene and acetylene adsorbed on Cu(111) and Pt(111) are compared. The spectra of ethylene on the two metals provide the first example of the sensitivity of AES to the nature of metal-adsorbate bonding for molecular adsorbates. The acetylene spectra are identical on the two metals. The changes in the carbon Auger spectra resulting from thermal decomposition of the two adsorbates on Pt(111) are discussed in the context of results from electron energy loss spectroscopy.  相似文献   

3.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

4.
《Surface science》1986,172(2):349-362
Thermal desorption spectroscopy and LEED have been used to investigate the interaction of CO and hydrogen with a Pd0.75Cu0.25(111) single crystal surface with surface composition of about Pd0.7Cu0.3. The main objective was to make a comparison with the previously studied Pd0.67Ag0.33(111) (surface composition Pd0.1Ag0.9) and Pd(111) surfaces. In addition, the effect of preadsorbed H on subsequent CO dosage and the effect of adsorbed CO on postdosed hydrogen are described. Marked differences were found in the adsorption behaviour of the three surfaces towards CO and hydrogen. The maximum amount of H and CO that can be adsorbed at 250 K and pressures below 10−9 mbar is much lower on the PdCu surface than expected on the basis of the surface composition. This effect appears to be caused by a low heat of adsorption of hydrogen and CO and Pd singlet sites. Arguments are presented that singlet Pd sites or isolated Pd atoms in a Cu or Ag matrix are able to trap and dissociate the hydrogen molecule at 250 K. The CO desorption spectra are not influenced by pre- or postexposed hydrogen. Adsorbed CO hampers the uptake of hydrogen upon subsequent exposure to hydrogen. Postdosed CO causes adsorbed H adatoms to move to the bulk (adsorbed H). CO exposure at 250 K results in a very broad desorption plateau between 310 and 425 K with hardly discernable maxima. The results can be explained in terms of the size and relative concentration of the various Pd sites present on the surface (triplet, doublet and singlet sites). It can be concluded that for Pd (111) the heat of adsorption of both CO and H differ appreciably for the triplet, doublet and singlet sites. The effect of site has a larger contribution to the decrease of the heat of adsorption with coverage than the effect of lateral interaction in the adlayer. For Pd(111), PdCu(111) and PdAg(111) the effect of the available Pd sites is the major effect that determines the heat of adsorption, followed by the effect of lateral interaction and for the alloy surfaces the electronic or ligand effect.  相似文献   

5.
The interaction of CO with a Cu(111) crystal alloyed with different amounts of iron is studied with ellipsometry and AES. Both molecular and dissociative adsorption are observed. The final coverages of oxygen and carbon are equal and such that the sum is the same or larger than the mole fraction of iron in the surface layer. The amount of molecularly adsorbed CO does not increase when a quantity of more than about four monolayers of iron is deposited. This is most probably due to the fact that the iron enrichment of the outer surface layer ceases as well. The isosteric heat of adsorption of CO on the Cu(111)-Fe crystal is 70±15 kJ/mol, independent of coverage and iron content of the surface within experimental error.  相似文献   

6.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

7.
Vibrational spectra of acetylene chemisorbed on Cu(111), Ni(110) and Pd(110) at 110–120 K were measured using electron energy loss spectroscopy. Loss peaks were assigned to vibrational modes of the non-dissociatively adsorbed molecules with the aid of the corresponding C2D2 spectra. The spectra show that the molecules undergo significant rehybridisation on adsorption. Comparisons are made with the spectra of acetylene adsorbed on a range of other transition metal surfaces at low temperature. Taking into account these and earlier literature results, two distinct patterns of spectra are observed (Type A and Type B) for specular spectra. The Cu(111) spectrum is classified as Type A while the Ni(110) and Pd(110) spectra are classified as Type B. Suggestions are made for the structures of the surface species corresponding to the two spectral types.  相似文献   

8.
A Fourier Transform infrared spectrometer has been attached to an ultrahigh vacuum (UHV) apparatus in order to perform reflection-absorption infrared Spectroscopy (RAIRS) of adsorbed species on well-defined surfaces.An infrared spectrum of carbon monoxide (CO) adsorbed at 90 K on Cu(111) has been measured using a resolution of 2 cm−1 and a measuring time of 60 s. Coverages below 1 % of a monolayer are easily detectable.Tetracyanoethylene (TCNE) has been adsorbed at various coverages at 100 K on Cu(111). Strongly red-shifted CN stretchings modes due to charged TCNE adspecies are observed at low coverage. The RAIRS spectrum of the condensed phase is characteristic of crystalline TCNE.Finally, isotopically labeled 12C and 13C acetonitrile (CH3CN) has been adsorbed on Cu(111) as multilayers. Shifts caused by isotopic labeling as small as 3 cm−1 are easily detected.  相似文献   

9.
The influence of CO adsorption on the Shockley type surface state on vicinal Cu(111) surfaces is investigated using angle resolved photoemission. As the steps are decorated with CO the surface state shifts to higher binding energies, which is opposite to the known behavior on flat Cu(111). This is described within a one-dimensional potential model in which clean steps represent repulsive barriers and decorated steps become attractive wells. From the coverage dependence the integrated CO well potential can be quantified. It is U(CO)a = -2.9 eV A on both Cu(332) and Cu(221) surfaces. Density functional calculations reveal that this attractive potential is due to the very local charge transfer from the Cu step atom to the adsorbed molecule.  相似文献   

10.
Room temperature adsorption of CO on bare and carbided (111), (100) and (110) nickel surfaces has been studied by vibrational electron energy loss spectroscopy (EELS) and thermal desorption. On the clean (100) and (110) surfaces two configurations of CO adsorbed species, namely “terminal” and bridge bonded CO, are observed simultaneously. On Ni(111), only two-fold sites are involved. The presence of superficial carbon lowers markedly the bond strength of CO on Ni(111)C and Ni(110)C surfaces, while no adsorption has been detected on the Ni(100)C surface. Moreover, on the carbided Ni(110)C surface, the adsorption mode for adsorbed CO is changed with respect to the clean surface; only “terminal” CO is then observed.  相似文献   

11.
Overlayers formed by the adsorption of Ni(CO)4 in CO on the Ni(111) surface at 100 K were characterized using high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. At temperatures below 135 K, molecular nickel carbonyl adsorbs on the CO saturated Ni(111) surface as suggested by several observations. Vibrational transitions characteristic of molecular Ni(CO)4 are dominant. The energy dependence of both the elastic and inelastic electron scattering cross sections are dramatically altered by Ni(CO)4 adsorption. All of the mass spectrometer ionization fragments typical of molecular Ni(CO)4 are observed in the narrow thermal desorption peak at 150 K. The inelastic scattering cross sections for both adsorbed nickel carbonyl and adsorbed CO on the Ni(111) surface suggest that a nonresonant dipole scattering mechanism is dominant.  相似文献   

12.
The adsorption of CO, O2, and H2O was studied on both the (111) and [6(111) × (100)] crystal faces of iridium. The techniques used were LEED, AES, and thermal desorption. Marked differences were found in surface structures and heats of adsorption on these crystal faces. Oxygen is adsorbed in a single bonding state on the (111) face. On the stepped iridium surface an additional bonding state with a higher heat of adsorption was detected which can be attributed to oxygen adsorbed at steps. On both (111) and stepped iridium crystal faces the adsorption of oxygen at room temperature produced a (2 × 1) surface structure. Two surface structures were found for CO adsorbed on Ir(111); a (√3 × √3)R30° at an exposure of 1.5–2.5 L and a (2√3 × 2√3)R30° at higher coverage. No indication for ordering of adsorbed CO was found on the Ir(S)-[6(111) × (100)] surface. No significant differences in thermal desorption spectra of CO were found on these two faces. H2O is not adsorbed at 300 K on either iridium crystal face. The reaction of CO with O2 was studied on Ir(111) and the results are discussed. The influence of steps on the adsorption behaviour of CO and O2 on iridium and the correlation with the results found previously on the same platinum crystal faces are discussed.  相似文献   

13.
《Surface science》1986,172(3):691-714
A novel method of calibration based on the solubility data of hydrogen in palladium is applied to both the analysis of thermal desorption spectra of hydrogen from Pd(111) and to studies on the influence of adsorbed carbon monoxide on the behaviour of adsorbed and absorbed hydrogen, at room temperature. For clean Pd(111) (θCO < 0.04 ML) the comparison of experimental and theoretical spectra shows that part of the hydrogen originally adsorbed on the surface dissolves. This hydrogen appears at higher temperatures as a diffusion tail. A strong influence of coadsorbed CO on the maximum hydrogen coverage was observed in the low-coverage region where usually the existence of isolated CO molecules on the surface can be expected. For hydrogen sorption comparison of experimental data with those calculated on the basis of the solution of Fick's second law for a plane sheet indicates that this process is solely diffusion controlled. On the other hand, a strong barrier for desorption of dissolved hydrogen is observed at θCO = 0.33 ML. It is concluded that the influence of CO on the behaviour of dissolved hydrogen may be consistently explained if there is a CO-induced change in the polarization state of adsorbed hydrogen atoms.  相似文献   

14.
The surface vibrations of CO adsorbed on Pt(111) single crystal surfaces at 320 K have been studied by electron-energy-loss spectroscopy. At low coverages two vibration modes at 58 and ∼260 meV are observed. For exposures >0.2 Langmuir two additional modes at 45 and 232 meV develop. Considering also the observed LEED structures these vibrations are attributed to CO molecules being adsorbed upright in on-top and bridge sites, respectively.  相似文献   

15.
A Ni(111) crystal with small angle boundaries was used to examine the adsorption of CO. The adsorption of CO on a perfect Ni(111) single crystal was used for reference. Auger spectra show that the boundary lines on the sample surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25°C. The post-dissociation carbon appears mostly in the form of a nickel carbide on the surface. After heating the crystal to 850°C, sulfur diffused to the surface and blocked the surface adsorption sites uniformly. The boundary-enhanced dissociation of absorbed CO is no longer observed after the diffusion of sulfur to the crystal surface. AES depth profiling of sulfur concentration at different positions on the crystal with respect to the boundary lines show no evidence that the boundary lines provide an enhanced path for sulfur diffusion.  相似文献   

16.
Molecular-orbital energy shifts are observed in photoemission from weakly physisorbed CO on clean and Xe-covered Al(111) surfaces. These shifts in ionization potentials are mainly due to final-state relaxation effects, which can be described approximately by a point-charge image-potential model. Differential distance- and orbital-dependent energy shifts suggest that CO molecules lie flat on the substrates. CO is adsorbed on Al(111) with a heat of formation of 0.21 eV/molecule.  相似文献   

17.
The reaction of NO with CO on Rh(111) has been studied with temperature programmed reaction (TPR). Comparisons are made with the reaction of O2 with CO and the reaction of NO with H2. The rate-determining step for both CO oxidation reactions is CO(a) + O(a) → CO2(g). Repulsive interactions between adsorbed CO and adsorbed nitrogen atoms lead to desorption of CO in a peak at 415 K which is in the temperature range where the reaction between CO(a) and O(a) produces CO2(g). Thus the extent of reaction of CO(a) with NO(a) is less than that between CO(a) and O(a) due to the lower coverage of CO caused by adsorbed N atoms and NO. A similar repulsive interaction between NO(a) and H(a) suppresses the NO + H2 reaction. CO + NO reaction behavior on Rh(111) is compared to that observed on Pt(111).  相似文献   

18.
C. Klünker  M. Balden  S. Lehwald  W. Daum   《Surface science》1996,360(1-3):104-111
Optical sum-frequency generation (SFG) is used to characterize CO stretching vibrations on Pt(111) and Pt(110) surfaces. Different adsorption sites (terminal, bridge and step sites) are identified in the SFG spectra of CO on Pt(111), in good quantitative agreement with previous infrared reflection-absorption experiments on this system. For CO on Pt(110) we only observe CO molecules on terminal sites. The measured CO stretching vibration frequencies on Pt(110), both for low and high coverages, are at variance with the results of previous infrared studies. Our SFG results for CO on Pt(110) are confirmed by independent EELS measurements which, in addition, also reveal the frustrated rotational mode and the metal-CO vibration. The measured frequency of 2065 cm−1 for low CO coverage on Pt(110)-(1 × 2) is consistent with a previously proposed empirical relation between the frequency of an isolated adsorbed CO molecule and the coordination number of the binding Pt surface atom.  相似文献   

19.
Temperature programmed desorption (TPD) of coadsorbed NO and CO on Pt(111) shows that no reaction occurs (less than 2%) up to the desorption temperature of NO. At 100 K, adsorption is competitive, but neither gas displaces the other from the surface. Coadsorbed CO causes the NO desorption temperature to be lowered by as much as 100 K, but NO does not affect the CO desorption temperature. TPD spectra for NO depend on which gas is adsorbed first, indicating that equilibrium between species is not established on the surface during desorption. Electron energy loss spectra show that the vibrational spectrum of each gas is only weakly affected by the other. When NO is adsorbed first, CO does not affect the ratio of bridged and terminal NO but lowers the frequencies of the bridged NO by approximately 50 cm?1 and lowers the intensities of vibrational peaks of both species by a factor of about four. When CO is adsorbed first, the ratio of terminal to bridged NO increases for given coverage of NO, and the frequency of the bridged NO remains at the pure NO value. These results are explained in terms of CO island formation, repulsive interactions between NO and CO, and low adsorbate mobilities.  相似文献   

20.
Selected thermal desorption and valence band photoemission data on the chemisorption of CO on PtCu(111) surfaces are presented. The main objective is to make a comparison with CO chemisorption on an annealed (1 × 3) reconstructed Pt0.98Cu0.02(110) surface. The (111) alloy surfaces are unreconstructed (1 × 1) surfaces, with average near-surface Cu concentrations ranging from ? 7.5% to ? 20% as indicated by the Cu 920 eV Auger signal. It is observed that the effect of alloying Pt(111) with Cu is to progressively lower the desorption peak temperature and hence the free energy of CO desorption from Pt sites. A second observation is that the energy distribution of the Cu 3d-derived states is little affected by CO adsorption on Cu sites at 155 K. Both these results offer a contrast to the results for CO/Pt0.98Cu0.02(110) reported earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号