首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Surface enhanced Raman scattering from copper phthalocyanine thin films deposited onto Ag films roughened by underlayers of gas-evaporated Si particles was investigated. The surface roughness was systematically varied by varying the average size of Si particles. Results of quantitative intensity measurements indicate that there exists an optimum surface roughness depth for SERS. The maximum enhancement factor obtained is ≈1.5 x 104 and a crude estimate of the optimum roughness depth is of the order of 100 Å. The origin of presently observed enhancement is thought to be purely electromagnetic, involving the excitation of the surface plasmon modes via the surface roughness.  相似文献   

2.
The electromagnetic effects on a molecule near a metal surface are considered with the view to understanding the surface-enhanced-Raman-scattering (SERS) effect. The image enhancement effect is calculated including the nonlocal response of the metal and finite molecular size. The effect is much reduced (× 10?5) from that for a point molecule above a local metal but can still give a gain ≈ 103. The power emitted by a dipole above a smooth surface is also calculated. For an Ag surface the power emitted in the form of photons, surface plasmons, and electron-hole excitations are found to be in the ratio 1 : 3 : 106. The numerical results are calculated using the semi-classical infinite-barrier model of the metal surface with a Lindhard dielectric function modified to take into account finite electron lifetime and core polarization.  相似文献   

3.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A simple method is demonstrated to detect DNA at low concentrations on the basis of surface‐enhanced Raman scattering (SERS) via polyvinyl alcohol‐protected silver grasslike patterns (PVA‐Ag GPs) grown on the surface of the common Al substrate. By the SERS measurements of sodium citrate and thymine, the PVA‐Ag GPs are shown to be an excellent SERS substrate with good activity, stability and reproducibility. With the use of the tested molecule of thymine, the enhancement factor of the PVA‐Ag GPs is up to ~1.4 × 108. The PVA‐Ag GPs are also shown to be an excellent SERS substrate with good biocompatibility for DNA detection, and the detection limit is down to ~10−5 mg/g. Meanwhile, the assignations of the Raman bands and the adsorption behaviors of the DNA molecules are also analyzed. In this work, the geometry optimization and the wavenumber analysis of adenine–Ag and guanine–Ag complexes for the ground states are performed using density functional theory, B3LYP functional and the LanL2DZ basis set. The transition energies and the oscillator strengths of adenine–Ag and guanine–Ag for the lowest six singlet excited states were calculated by using the time‐dependent density functional theory method with the same functional and basis set. The results show that the charge transfer in the adenine–Ag and guanine–Ag complexes should be the chemical factor for the SERS of the DNA molecules. Lastly, this method may be employed in large‐scale preparation of substrates that have been widely applied in the Raman analysis of DNA because the fabrication process is simple and inexpensive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of submonolayer and monolayer amounts of Pb deposited at underpotential on a polycrystalline Ag electrode surface on the surface enhanced Raman scattering behavior of pyridine and Cl? adsorbates is presented. Surfaces covered by greater than 70% of a Pb monolayer do not support significant surface enhancement. The changes observed in SERS intensity as a function of fractional Pb coverage are interpreted in terms of changes in surface electronic properties and changes in adsorbate coverage. Evidence for changes in the structure of the Pb overlayer is also presented. Investigation of the reversibility of the SERS behavior after deposition and quantitative stripping of varying amounts of Pb provides information on the roles played by various sizes of surface roughness in SERS. These data suggest that both large scale and atomic scale roughness contribute to the SERS intensities measured in these systems.  相似文献   

7.
Surface enhanced Raman scattering (SERS) due to charge transfer interactions between the adsorbed molecule and the metal surface is analyzed using the semiempirical Wolfsberg-Helmholz method1 to relate the molecule-surface interactions and the resulting charge transfer states to the overlap integrals between the metal conduction-band orbitals and an acceptor or donor molecular orbital of the molecule. Calculations for the model system of ethylene adsorbed on silver (approximated as a simple cubic metal with tight binding wave functions constructed from Ag 5s valence orbitals), with charge-transfer excitation of an electron from the metal to the antibonding ethylene π orbital, show that charge-transfer Raman enhancements of the order of 10 to 1000 are possible if the charge-transfer band is partially resonant with the exciting radiation. The net enhancement is the product of the charge-transfer gain and the electrodynamic enhancement due to plasmon resonances at surface roughness elements. Symmetric vibrations usually will be enhanced substantially more than nonsymmetric ones by charge-transfer because, in contrast to non-resonant Raman scattering, the vibrational coupling is primarily Franck- Condon (due to differences in the equilibrium nuclear configurations of the ground and excited charge transfer states and the resulting nonorthogonality of different vibrational sublevels of these states) rather than Herzberg-Teller (due to vibrationally induced changes in the electronic wave functions). The charge-transfer mechanism is selective with the most enhanced vibrations involving those atoms which experience the greatest change in electron density between the ground and excited charge-transfer state. A recent report of SERS for benzene on platinum,2 strongly suggests charge-transfer enhancement because the electromagnetic-field-enhancing plasmon resonances are strongly damped in this metal.The complete paper will be published in the December 1, 1982 issue of the Journal of Chemical Physics.  相似文献   

8.
The Ag–Au compound nanostructure films with controllable patterns of Ag nanoparticle (NP) aggregates were fabricated. A strategy of two‐step synthesis was employed toward the target products. Firstly, the precursor Au NP (17 nm) films were synthesized as templates. Secondly, the Ag NPs (45 nm) were deposited on the precursor films. Three types of Ag NP aggregates were obtained including discrete Ag NPs (discrete type), necklace‐like Ag NP aggregates (necklace type), and huddle‐like Ag NP aggregates (huddle type). The surface‐enhanced Raman scattering (SERS) property was studied on these nanostructures by using the probing molecule of rhodamine 6G under the excitation laser of 514.5 nm. Interestingly, the different types of samples showed different enhancement abilities. A statistical method was employed to assess the enhancement. The relative enhancement factor for each Ag NP was estimated quantitatively under the ratio of 1 : 25 : 18 for the discrete‐type, necklace‐type, and huddle‐type samples at the given concentration of 10−8 mol/l. This research shows that the enhancement ability of each Ag NP is dependent on the aggregate morphology. Moreover, the different enhancement abilities displayed different limit detection concentrations up to 10−8, 10−11, and 10−9 mol/l, separately. The understanding of the relationship between the defined nanostructures and the SERS enhancement is very meaningful for the design of new SERS substrates with better performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Uniform and reproducible substrates for surface enhanced Raman scattering (SERS) are fabricated by self-assembly of Ag nanoparticles (NPs) on 3-aminopropyltrimethoxysilane (APTES) modified glass. Experimental results indicate that the Ag NPs with a narrow size distribution were assembled as a sub-monolayer which exhibits an excellent SERSactivity. The SERS enhancement factor is estimated to be 7.5 × 106 and the detection limit for crystal violet (CV) solution is about ~10?11 M. The uniformity and reproducibility of the SERS signals are tested by point-to-point and batch-to-batch measurements. It is confirmed that the self-assembled Ag NPs substrates has a high SERS reproducibility and a low standard deviation with respect to the Ag NPs on non-functionalized glass substrates. The self-assembled Ag NPs substrates can be widely used for the application of chemical and biochemical sensing.  相似文献   

11.
Two types of highly Raman-enhancing arrays substrates were fabricated using anodic aluminum oxide (AAO) templates by controlling the AAO template temperature and evaporated silver thickness during e-beam evaporating: complex patterned Ag nanoparticle arrays abundant in sub-5 nm gaps (type I); hexagonal Ag nanopore arrays (type II). The surface enhanced Raman scattering (SERS) enhancement factors (EF) of both substrates are estimated experimentally to exceed 105, especially that of type I reaches 107 due to the existence of numerous sub-5 nm gaps. The simulation using finite-difference time-domain (FDTD) method confirmed that gap effect has significantly improved the substrates’ SERS activity.  相似文献   

12.
It is demonstrated that the surface-enhanced Raman scattering (SERS) intensity of R6G molecules adsorbed on a Ag nanoparticle array can be controlled by tuning the size and height of the nanoparticles. A firm Ag nanoparticle array was fabricated on glass substrate by using nanosphere lithography (NSL) combined with reactive ion etching (RIE). Different sizes of Ag nanoparticles were fabricated with seed polystyrene nanospheres ranging from 430 nm to 820 nm in diameter. By depositing different thicknesses of Ag film and lifting off nanospheres from the surface of the substrate, the height of the Ag nanoparticles can be tuned. It is observed that the SERS enhancement factor will increase when the size of the Ag nanoparticles decreases and the deposition thickness of the Ag film increases. An enhancement factor as high as 2×106 can be achieved when the size of the polystyrene nanospheres is 430 nm in diameter and the height of the Ag nanoparticles is 96 nm. By using a confocal Raman mapping technique, we also demonstrate that the intensity of Raman scattering is enhanced due to the local surface plasmon resonance (LSPR) occurring in the Ag nanoparticle array.  相似文献   

13.
Both surface enhanced Raman scattering (SERS) and surface enhanced resonant Raman scattering (SERRS) have been observed from Ru(bpy)32+ adsorbed on p-GaAs (1 0 0) after the electrodeposition of Ag particles onto the semiconductor surface. For the enhancement factor for SERS a lower limit of 104 has been determined.  相似文献   

14.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The SERS of p-nitrobenzoic acid has been first obtained in Ag hydrosol and compared with those deriving from filtration of colloidal silver. The roughness of the Ag-coated filters has been examined by AFM measurements and related to the SERS enhancement. The addition of chloride anions to the colloidal suspension strongly increases the surface roughness of the solid metal substrates and activates the photoreaction of the adsorbate by irradiation with green laser light.  相似文献   

16.
We have demonstrated a novel method to generate the nanostructured substrate that shows a large enhancement with a spatially uniform enhancement factor of approximately 106 in surface enhanced Raman scattering (SERS). The substrates are fabricated using plasma selective etching. First, the Al2O3–TiC template which contains mixed Al2O3 and TiC grains with the diameters of ~400 nm is selected as a base plate. The Al2O3 and TiC grains have different physical properties, such as hardness, which corresponds to different etching rate in a plasma gas. Then, the Al2O3–TiC substrate is selectively etched to generate a random macro‐texture (MT) with different depths using the plasma of mixed gas of Ar and C2H4. Third, the MT substrate is deposited with a silver film (Ag). We further demonstrate that by varying the thickness of Ag layer, the EF is different which is confirmed by the plasmonic localized electric fields calculations using finite difference time domain. Finally, we combine this novel Ag MT substrate with ultrathin dielectric film, and the prepared substrates are coated with a 10 Å ta‐C film. The 10 Å ta‐C film can protect the oxygen‐free Ag in air and prevent Ag ionizing in aqueous solutions. More importantly, the ultrathin ta‐C can release the strongest plasmonic electric field to the outside of ta‐C layer and get a higher electric field than the uncoated Ag substrate. We expect that this method has more potential applications in analytic assays using SERS technology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of nanostructures having different morphology located in the vicinity of metal nanoclusters (Ag, Au, and Pt). Assignment of surface optical modes is based on calculations performed in the frame of the dielectric continuum model. It is established that SERS by phonons has a resonant character. A maximal enhancement by optical phonons as high as 730 is achieved for CdS nanocrystals in double resonant conditions at the coincidence of laser energy with that of electronic transitions in semiconductor nanocrystals and localized surface plasmon resonance in metal nanoclusters. Even a higher enhancement is observed for SERS by surface optical modes in ZnO nanocrystals (above 104). Surface enhanced Raman scattering is used for studying phonon spectrum in nanocrystal ensembles with an ultra-low areal density on metal plasmonic nanostructures.  相似文献   

18.
The use of Au@SiO2 core/shell nanoparticle (NP) assemblage with highly sensitive surface‐enhanced Raman scattering (SERS) was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell NPs with various silica shell thicknesses. The enhancement of SERS signal from Rhodamine 6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1–2 nm over a Au NP of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10−12–10−3 M) and 16.8 ng/dL to 2.9 mg/dL (10−11–1.72 × 10−4 M), respectively, with associated lower detection limits of ~20 ng/dL (~1.0 × 10−12 M) and ~16.8 ng/dL (~1.0 × 10−11 M). Our work offers a low‐cost route to the fabrication of agile sensing devices applicable to the monitoring of disease progression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au overlayer were systematically constructed, with the thickness of each layer altered from 40 to 320 nm. The SERS responses of the resultant bimetallic structures were measured with 2‐naphthalenethiol dye as the test sample. The results confirm the dependency of SERS enhancement on the thickness ratio (Au : Ag). Compared with Au‐arrays, our optimized bimetallic structures, which exhibit nanoprotrusions on the nanospheres, were found to be 2.5 times more SERS enhancing, approaching the enhancement factor of an Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with increased roughness of the outer Au film, resulting from subsequent sputtering of Au granules on a roughened Ag surface. The morphology and reflectance studies suggest that the SERS hot‐spots are distributed at the junctions of interconnected nanospheres and over the nanosphere surface, depending on the thickness ratio between the Au and Ag layers. We show that, by varying the thickness ratio, it is possible to optimize the SERS enhancement factor without significantly altering the operating plasmon resonance wavelength, which is dictated solely by the size of the underlying nanospheres template. In addition, our bimetallic substrates show long‐term stability compared with previously reported Ag‐arrays, whose SERS efficiency drops by 60% within a week because of oxidation. These findings demonstrate the potential of using such a bimetallic configuration to morphologically optimize any SERS substrate for sensing applications that demand huge SERS enhancement and adequate chemical stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号