首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
There have been a number of recent papers by various authors addressing static fracture in the setting of the linearized theory of elasticity in the bulk augmented by a model for surface mechanics on fracture surfaces with the goal of developing a fracture theory in which stresses and strains remain bounded at crack-tips without recourse to the introduction of a crack-tip cohesive-zone or process-zone. In this context, surface mechanics refers to viewing interfaces separating distinct material phases as dividing surfaces, in the sense of Gibbs, endowed with excess physical properties such as internal energy, entropy and stress. One model for the mechanics of fracture surfaces that has received much recent attention is based upon the Gurtin-Murdoch surface elasticity model. However, it has been shown recently that while this model removes the strong (square-root) crack-tip stress/strain singularity, it replaces it with a weak (logarithmic) one. A simpler model for surface stress assumes that the surface stress tensor is Eulerian, consisting only of surface tension. If surface tension is assumed to be a material constant and the classical fracture boundary condition is replaced by the jump momentum balance relations on crack surfaces, it has been shown that the classical strong (square-root) crack-tip stress/strain singularity is removed and replaced by a weak, logarithmic singularity. If, in addition, surface tension is assumed to have a (linearized) dependence upon the crack-surface mean-curvature, it has been shown for pure mode I (opening mode), the logarithmic stress/strain singularity is removed leaving bounded crack-tip stresses and strains. However, it has been shown that curvature-dependent surface tension is insufficient for removing the logarithmic singularity for mixed mode (mode I, mode II) cracks. The purpose of this note is to demonstrate that a simple modification of the curvature-dependent surface tension model leads to bounded crack-tip stresses and strains under mixed mode I and mode II loading.  相似文献   

2.
The plane elasticity problem of bending of a cantilever strip whose material is assumed to be incompressible in the transverse direction is solved. It is shown that, in the classical statement of of the boundary condition for the fixed edge of the strip, the solution has a singularity at the corner points of the edge. Several cases of the strip fixation and loading characterized by the presence or absence of the solution singularity are considered. The strength of glass beams of three types, for which the theory of elasticity predicts whether the normal stress has a singularity, is studied experimentally. It is shown that the limit stresses for the beams of the types under study are practically the same, which testifies that the solution singularity does not have any physical nature.  相似文献   

3.
When an elastic composite wedge is not under a plane strain deformation, an out-of-the-plane extensional strain exists. The singularity analysis for the stresses at the apex of the composite wedge reduces to a system of non-homogeneous linear equations. When the composite wedge consists of two anisotropic elastic materials, it is shown that the stresses have the (ln r) term for all combinations of wedge angles with few exceptions. The same is true when the materials are isotropic except that the (ln r) term may appear in the form of r(ln r) in the displacements only. For these isotropic composite wedges therefore the stresses are bounded, though not continuous, at the apex. However, there are isotropic composite wedges for which the stress singularity is logarithmic. Conditions are given for isotropic composite wedges for which the stresses are (a) uniform, (b) non-uniform but bounded and (c) logarithmic. Unlike the r−λ singularity, the existence of the (ln r) term does not depend on the complete boundary conditions.  相似文献   

4.
There are problems in the classical linear theory of elasticity whose closed form solutions, while satisfying the governing equations of equilibrium together with well-posed boundary conditions, predict the existence of regions, often quite small, inside the body where material overlaps. Of course, material overlapping is not physically realistic, and one possible way to prevent it combines linear theory with the requirement that the deformation field be injective. A formulation of minimization problems in classical linear elasticity proposed by Fosdick and Royer [3] imposes this requirement through a Lagrange multiplier technique. An existence theorem for minimizers of plane problems is also presented. In general, however, it is not certain that such minimizers exist. Here, the Euler–Lagrange equations corresponding to a family of three-dimensional problems is investigated. In classical linear elasticity, these problems do not have bounded solutions inside a body of anisotropic material for a range of material parameters. For another range of parameters, bounded solutions do exist but yield stresses that are infinite at a point inside the body. In addition, these solutions are not injective in a region surrounding this point, yielding unrealistic behavior such as overlapping of material. Applying the formulation of Fosdick and Royer on this family of problems, it is shown that both the displacements and the constitutive part of the stresses are bounded for all values of the material parameters and that the injectivity constraint is preserved. In addition, a penalty functional formulation of the constrained elastic problems is proposed, which allows to devise a numerical approach to compute the solutions of these problems. The approach consists of finding the displacement field that minimizes an augmented potential energy functional. This augmented functional is composed of the potential energy of linear elasticity theory and of a penalty functional divided by a penalty parameter. A sequence of solutions is then constructed, parameterized by the penalty parameter, that converges to a function that satisfies the first variation conditions for a minimizer of the constrained minimization problem when this parameter tends to infinity. This approach has the advantages of being mathematically appealling and computationally simple to implement.  相似文献   

5.
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.  相似文献   

6.
Exact solutions to the elasticity theory problem in terms of stresses for an incompressible conical body of arbitrary shape under the action of a given concentrated force applied at its vertex are given and analyzed. A solution in terms of stresses with a singularity whose order is higher by one than that in the classical solution is discussed. The surface load at the boundary of the conical body corresponding to such a solution is obtained.  相似文献   

7.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

8.
A physical cut model is used to describe the changes in the stress-strain state(SSS)in elastoplastic bodies weakened by cracks. The distance between the crack edges is considered to be finite in contrast to the mathematical cut. The interactive layer with a thickness limited by the possibility of using the hypothesis of continuity is distinguished on the physical cut extension.Distribution of stresses and strains over the layer thickness is constant and does not depend on the geometry of the boundary between the cut and the interactive layer. The relationship between stresses and strains is determined by the deformation plasticity theory. The problem of plane strain or plane stress state of an arbitrary finite body weakened by a physical cut is reduced to solving a system of two variational equations for displacement fields in the body parts adjacent to the interactive layer. The proposed approach eliminates the singularity in stress distribution in contrast to the mathematical cut model. Use of local strength criteria allows us to determine the time, point and direction of the fracture initiation. Possibilities of the proposed model are illustrated by solving the problems of determining the SSS of a rectangular body weakened by a physical cut under symmetric and antisymmetric loadings.  相似文献   

9.
In the plane problem of the theory of elasticity about a cantilever strip bending, we study the stress state near its fixed end. It is found that the solution singularity at the corner points does not have any physical nature and is generated by specific characteristics of the statement of the problem in which it is assumed that the stress tensor symmetry is violated at these points.  相似文献   

10.
To optimize the design of force dynamometers incorporating octagonal ring elements it is important to be able to predict the dynamometer sensitivities. Previous methods relying on thin ring theory have been inadequate because octagonal rings often have a thickness which cannot be considered thin and, further, the thickness is not uniform. In this paper, empirical equations that describe the deflections, strains and von Mises stresses of individual octagonal rings due to radial, tangential and axial forces are developed using finite-element models. These models are loaded and constrained to simulate the most common uses of octagonal rings in force dynamometers. A nonlinear regression routine is used to develop the above equations from the data given by the finite-element analysis. The performance of these equations is evaluated and presented in tabular form. A procedure is also outlined to describe the use of these equations in the design of six-load-component dynamometers.  相似文献   

11.
三维切口应力奇性指数计算   总被引:1,自引:0,他引:1  
将三维切口根部的位移渐近展开式引入线弹性力学平衡方程,导得关于切口应力奇性指数的特征微分方程组。再采用插值矩阵法,一次性地计算出三维切口的各阶应力奇性指数,它们具有同阶精度,并可同时获取相应的特征角函数。算例显示该法是分析三维切口应力奇异指数的一个有效的路径。计算结果表明,若直接用平面应变理论预测三维切口应力奇性指数将导致部分重要的奇性指数丢失。  相似文献   

12.
Continuum approaches to fracture regard crack initiation and growth as the ultimate consequences of a gradual, local loss of material integrity. The material models which are traditionally used to describe the degradation process, however, may predict premature crack initiation and instantaneous, perfectly brittle crack growth. This nonphysical response is caused by localisation instabilities due to loss of ellipticity of the governing equations and—more importantly—singularity of the damage rate at the crack tip. It is argued that this singularity results in instantaneous failure in a vanishing volume, even if ellipticity is not first lost. Adding strong nonlocality to the modelling is shown to preclude localisation instabilities and remove damage rate singularities. As a result, premature crack initiation is avoided and crack growth rates remain finite. Weak nonlocality, as provided by explicit gradient models, does not suffice for this purpose. In implementing the enhanced modelling, the crack must be excluded from the equilibrium problem and the nonlocal interactions in order to avoid unrealistic damage growth.  相似文献   

13.
Summary In this paper an investigation is given into the behaviour of the stress singularity which occurs in the linear theory of elasticity at the deformation of a sector plate, if finite deformations are considered. It is assumed that for very small deformations Hooke's law is valid, and only in the neighbourhood of the singularity Hooke's law has to be extended. This extension is not unique. It is shown that for two different strain-energy functions, which have the same asymptotic expansion for infinitesimal deformations, the behaviour of the solutions is quite different. One of the strain-energy functions leads to a bounded solution, while the solution, obtained from the other one becomes singular for the case of contraction. As it cannot be expected that it will be possible to decide on an experimental basis about the right extension, an assertion about the difference in smoothness of solutions to problems in linear and non-linear theory cannot be given. An open question is raised: whether or not the requirement of regularity for this kind of problems in non-linear theory can be posed as a restriction on the admissible energy functions.  相似文献   

14.
The edge effect in layered composite material is studied using the piecewise-homogeneous body model and the exact equations of the theory of elasticity. It is assumed that continuously distributed normal forces act at the edges of the reinforcing layers. A plain strain state is considered and the stresses are expressed in terms of the solutions of a system of dual singular integral equations. The singularity of the stresses is determined by the solution procedure. The concentration of the reinforcing layers is assumed low and the interaction between them is not taken into account. A numerical algorithm is developed and numerical results on the stress distribution are presented Published in Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 134–144, April 2008.  相似文献   

15.
The plane problem of the theory of elasticity is considered. It is assumed that in the neighborhood of the tip of an arbitrarily moving crack the stresses have a singularity of order r–1/2. On this assumption a general expression is obtained for the distribution of the stresstensor components in the given neighborhood. This distribution is determined by the two parameters N and P. In the case of stresses symmetrical about the line of the crack (P=0) the angular distribution does not depend on the intensity coefficient N and is determined only by the velocity of the crack at the given instant and the transverse and longitudinal wave velocities. On the same assumptions it is shown that the energy condition obtained by Craggs for the particular case of steady-state motion is a necessary condition for the arbitrarily moving crack. Irwin [1] and Cherepanov [2] have studied these questions in the quasi-static approximation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 175–178, May–June, 1969.  相似文献   

16.
Summary A variant of the boundary element method, called the boundary contour method, offers a further reduction in dimensionality. Consequently, boundary contour analysis of 2-D problems does not require any numerical integration at all. In a boundary contour analysis, boundary stresses can be accurately computed using the approach proposed in Ref. [1]. However, due to singularity, this approach can be used only to calculate boundary stresses at points that do not lie at an end of a boundary element. Herein, it is shown that a technique based on the displacement/velocity shape functions can overcome this drawback. Further, the approach is much simpler to apply, requires less computational effort, and provides competitive accuracy. Numerical solutions and convergence study for some well-known problems in linear elasticity and Stokes flow are presented to show the effectiveness of the proposed approach. This research was supported in part by the 2004 Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities and by the University of South Alabama Research Council.  相似文献   

17.
A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.  相似文献   

18.
Expressions for the self-energy of straight-line dislocation segments are derived on the basis of the pseudo-continuum theory. Final results are given in simple form and are shown to be valid even for very short segments of the order of 10 interatomic distances. The dependence of the energy expressions on the assumptions introduced is discussed. Dispersive terms are also derived and their influence on the values of the energy is studied. The results are compared with those obtained on the basis of the classical theory of elasticity. The use of the pseudo-continuum model obviates the necessity of introducing an ill-defined core parameter, because in this model the singularity on the dislocation line does not exist. It is the presence of this singularity in classical elasticity which necessitates the introduction of the core parameter. Numerical data illustrate the results obtained as summarized in two tables.  相似文献   

19.
Application of the plane theory of elasticity to planar crack or angular corner geometries leads to the concept of stress singularity and stress intensity factor, which are the cornerstone of contemporary fracture mechanics. However, the stress state near an actual crack tip or corner vertex is always three-dimensional, and the meaning of the results obtained within the plane theory of elasticity and their relation to the actual 3D problems is still not fully understood. In particular, it is not clear whether the same stress field as found from the well-known 2D solutions of the theory of elasticity do describe the corresponding stress components in a plate made of a sufficiently brittle material and subjected to in-plane loading, and what effect the plate thickness has. In the present study we adopt, so called, first order plate theory to attempt to answer these questions. New features of the elastic solutions obtained within this theory are discussed and compared with 2D analytical results and experimental studies as well as with 3D numerical simulations.  相似文献   

20.
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to the anti-plane shear. Then a set of dual-integral equations is solved using Schmidts method. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号