首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV-vis and Raman spectroscopy were used to study iodine molecules trapped in sII clathrate hydrate structures stabilized by THF, CH(2)Cl(2), or CHCl(3). The spectra show that the environment for iodine inside the water cage is significantly less perturbed than either in aqueous solution or in amorphous water-ice. The resonance Raman progression of I(2) in THF clathrate hydrate can be observed up to v = 6 when excited at 532 nm. The extracted vibrational frequency omega e = 214 +/- 1 cm(-1) is the same as that of the free molecule to within experimental error. At the same time, the UV-vis absorption spectrum of I(2) in the sII hydrate exhibits a relatively large, 1440 cm(-1), blue-shift. This is mainly ascribed to the differential solvation of the I(2) electronic states. We conclude that iodine in sII hydrate resides in a 5(12)6(4) cavity, in which the ground-state I(2) potential is not significantly perturbed by the hydrate lattice. In contrast, in water and in ice, the valence absorption band of I(2) is dramatically broadened and blue-shifted by 3000 cm(-1), and the resonance Raman scattering is effectively quenched. These observations are shown to be consistent with a strong interaction between water molecule and iodine through the lone pair of electrons on water as in the case of bromine in the same media. The results presented here, and the stability of other halogen hydrates, were used to test the predictions of simple models and force-field calculations of the host cage-guest association energy.  相似文献   

2.
Two ionic clathrate hydrates with different structures are formed in the binary system tetrabutylammonium fluoride–water, namely tetragonal structure-I hydrate (TS-I) (n-С4H9)4NF · 32.8H2O, and cubic superstructure-I hydrate (CSS-I) (n-С4H9)4NF · 29.7H2O. The heats of fusion (ΔHf) of these polyhydrates were measured calorimetrically with differential scanning calorimeter. For TS-I polyhydrate ΔHf = (204.8 ± 2.3) kJ/mol hydrate, for CSS-I hydrate ΔHf = (177.5 ± 3.1) kJ/mol polyhydrate. The change of water molecules energy state in the water lattices of TS-I and CSS-I polyhydrates are discussed.  相似文献   

3.
Vibronically resolved resonant two-photon ionization and dispersed fluorescence spectra of the organometallic radicals CrC(2)H, CrCH(3), and NiCH(3) are reported in the visible and near-infrared wavelength regions. For CrC(2)H, a complicated vibronic spectrum is found in the 11 100-13 300 cm(-1) region, with a prominent vibrational progression having omega(e) (')=426.52+/-0.84 cm(-1), omega(e) (')x(e) (')=0.74+/-0.13 cm(-1). Dispersed fluorescence reveals a v(")=1 level of the ground state with DeltaG(1/2) (")=470+/-20 cm(-1). These vibrational frequencies undoubtedly pertain to the Cr-C(2)H stretching mode. It is suggested that the spectrum corresponds to the A (6)Sigma(+)<--X (6)Sigma(+) band system, with the CrC(2)H molecule being linear in both the ground and the excited state. The related CrCH(3) molecule displays a vibronic spectrum in the 11 500-14 000 cm(-1) region. The upper state of this system displays six sub-bands that are too closely spaced to be vibrational structure, but too widely separated to be K structure. It is suggested that the observed spectrum is a (6)E<--X (6)A(1) band system, analogous to the well-known B (6)Pi<--X (6)Sigma(+) band systems of CrF and CrCl. The ground state Cr-CH(3) vibration is characterized by omega(e) (")=525+/-17 cm(-1) and omega(e) (")x(e) (")=7.9+/-6 cm(-1). The spectrum of NiCH(3) lies in the 16 100-17 400 cm(-1) range and has omega(e) (')=455.3+/-0.1 cm(-1) and omega(e) (')x(e) (')=6.60+/-0.03 cm(-1). Dispersed fluorescence studies provide ground state vibrational constants of omega(e) (")=565.8+/-1.6 cm(-1) and omega(e) (")x(e) (")=1.7+/-3.0 cm(-1). Again, these values correspond to the Ni-CH(3) stretching motion. (c) 2004 American Institute of Physics.  相似文献   

4.
Time-resolved coherent anti-Stokes Raman scattering, with a resolution of 20 fs, is used to prepare a broadband vibrational superposition on the ground electronic state of I2 isolated in solid Kr. The coherent evolution of a packet consisting of nu=1-6 is monitored for as many as 1000 periods, allowing a precise analysis of the material response and radiation coherence. The molecular vibrations are characterized by omega(e)=211.330(2) cm(-1), omega(e)x(e)=0.6523(6) cm(-1), omega(e)y(e)=2.9(1) x 10(-3) cm(-1); the dephasing rates at 32 K range from 110 ps for nu=1 to 34 ps for nu=6, with nu dependence: gamma(nu)=8.5 x 10(-3)+4.9 x 10(-4)nu2+2.1 x 10(-6)nu4 ps(-1). The signal amplitude is also modulated at omega(q)=41.56(3) cm(-1); which can be interpreted as coupling between the molecule and a local mode. The surprising implication is that this resonant local mode is decoupled from the lattice phonons, a finding that cannot be rationalized based on a normal-mode analysis.  相似文献   

5.
By the utilization of a new laboratory method to synthesize OBrO employing an electric discharge, the visible absorption spectrum of gaseous OBrO has been investigated. Absorption spectra of OBrO have been recorded at 298 K, using a continuous-scan Fourier transform spectrometer at a spectral resolution of 0.8 cm(-1). A detailed vibrational and rotational analysis of the observed transitions has been carried out. The FTS measurements provide experimental evidence that the visible absorption spectrum of OBrO results from the electronic transition C(2A2)-X(2B1). Vibrational constants have been determined for the C(2A2) state (omega(1) = 648.3 +/- 1.9 cm(-1) and omega 2 = 212.8 +/- 1.2 cm(-1)) and for the X(2B1) state (omega 1 = 804.1 +/- 0.8 cm(-1) and omega 2 = 312.2 +/- 0.5 cm(-1)). The vibrational bands (1,0,0), (2,0,0), and (1,1,0) show rotational structure, whereas the other observed bands are unstructured because of strong predissociation. Rotational constants have been determined experimentally for the upper electronic state C(2A2). By modeling the band contours, predissociation lifetimes have been estimated. Further, an estimate for the absorption cross-section of OBrO has been made by assessing the bromine budget within the gas mixture, and atmospheric lifetimes of OBrO have been calculated using a photochemical model.  相似文献   

6.
Raman spectroscopy of bromine in the liquid phase and in water illustrates uncommon principles and yields insights regarding hydration. In liquid Br(2), resonant excitation over the B((3)Π(0u)(+)) ← X((1)Σ(g)(+)) valence transition at 532 nm produces a weak resonant Raman (RR) progression accompanied by a five-fold stronger non-resonant (NR) scattering. The latter is assigned to pre-resonance with the C-state, which in turn must be strongly mixed with inter-molecular charge transfer states. Despite the electronic resonance, RR of Br(2) in water is quenched. At 532 nm, the homogeneously broadened fundamental is observed, as in the NR case at 785 nm. The implications of the quenching of RR scattering are analyzed in a simple, semi-quantitative model, to conclude that the inertial evolution of the Raman packet in aqueous Br(2) occurs along multiple equivalent water-Br(2) coordinates. In distinct contrast with hydrophilic hydration in small clusters and hydrophobic hydration in clathrates, it is concluded that the hydration shell of bromine in water consists of dynamically equivalent fluxional water molecules. At 405 nm, the RR progression of Br(3)(-) is observed, accompanied by difference transitions between the breathing of the hydration shell and the symmetric stretch of the ion. The RR scattering process in this case can be regarded as the coherent photo-induced electron transfer to the solvent and its radiative back-transfer.  相似文献   

7.
We report the first UV-vis spectroscopic study of bromine molecules confined in clathrate hydrate cages. Bromine in its natural hydrate occupies 51262 and 51263 lattice cavities. Bromine also can be encapsulated into the larger 51264 cages of a type II hydrate formed mainly from tetrahydrofuran or dichloromethane and water. The visible spectra of the enclathrated halogen molecule retain the spectral envelope of the gas-phase spectra while shifting to the blue. In contrast, spectra of bromine in liquid water or amorphous ice are broadened and significantly more blue-shifted. The absorption bands shift by about 360 cm-1 for bromine in large 51264 cages of type II clathrate, by about 900 cm-1 for bromine in a combination of 51262 and 51263 cages of pure bromine hydrate, and by more than 1700 cm-1 for bromine in liquid water or amorphous ice. The dramatic shift and broadening in water and ice is due to the strong interaction of the water lone-pair orbitals with the halogen sigma* orbital. In the clathrate hydrates, the oxygen lone-pair orbitals are all involved in the hydrogen-bonded water lattice and are thus unavailable to interact with the halogen guest molecule. The blue shifts observed in the clathrate hydrate cages are related to the spatial constraints on the halogen excited states by the cage walls.  相似文献   

8.
9.
Equilibrium constants for bromine hydrolysis, K(1) = [HOBr][H(+)][Br(-)]/[Br(2)(aq)], are determined as a function of ionic strength (&mgr;) at 25.0 degrees C and as a function of temperature at &mgr; approximately 0 M. At &mgr; approximately 0 M and 25.0 degrees C, K(1) = (3.5 +/- 0.1) x 10(-)(9) M(2) and DeltaH degrees = 62 +/- 1 kJ mol(-)(1). At &mgr; = 0.50 M and 25.0 degrees C, K(1) = (6.1 +/- 0.1) x 10(-)(9) M(2) and the rate constant (k(-)(1)) for the reverse reaction of HOBr + H(+) + Br(-) equals (1.6 +/- 0.2) x 10(10) M(-)(2) s(-)(1). This reaction is general-acid-assisted with a Br?nsted alpha value of 0.2. The corresponding Br(2)(aq) hydrolysis rate constant, k(1), equals 97 s(-)(1), and the reaction is general-base-assisted (beta = 0.8).  相似文献   

10.
Experimentally determined equilibrium phase relations are reported for the system H2-THF-H2O as a function of aqueous tetrahydrofuran (THF) concentration from 260 to 290 K at pressures up to 45 MPa. Data are consistent with the formation of cubic structure-II (CS-II) binary H2-THF clathrate hydrates with a stoichiometric THF-to-water ratio of 1:17, which can incorporate modest volumes of molecular hydrogen at elevated pressures. Direct compositional analyses of the clathrate phase, at both low (0.20 mol %) and stoichiometric (5.56 mol %) initial THF aqueous concentrations, are consistent with observed phase behavior, suggesting full occupancy of large hexakaidecahedral (51264) clathrate cavities by THF, coupled with largely complete (80-90%) filling of small dodecahedral (512) cages by single H2 molecules at pressures of >30 MPa, giving a clathrate formula of (H2) < or =2.THF.17H2O. Results should help to resolve the current controversy over binary H2-THF hydrate hydrogen contents; data confirm recent reports that suggest a maximum of approximately 1 mass % H2, this contradicting values of up to 4 mass % previously claimed for comparable conditions.  相似文献   

11.
Single crystals of Ta4S9Br8 are obtained by heating Ta, S, and Br2 at 400 degrees C in a 4.0:9.0:4.0 molar ratio in a 44% yield. The structure was determined by X-ray analysis and consists of molecular clusters [Ta4(mu4-S)(mu-S2)4Br8]. The tantalum atoms form a square with long Ta...Ta distances (3.30 angstroms), with four S2 ligands bridging the Ta-Ta edges and one capping the square. Each Ta atom has two terminal bromine atoms. The compound is diamagnetic and has only two electrons for metal-metal bonding. IR and Raman spectral studies with the use of 34S allow to identify characteristic vibrations S-S (537 cm(-1)) and Ta4-mu4-S (407 cm(-1)). The compound is soluble in CH3CN, giving a dark-red solution with a characteristic electronic spectrum, which was assigned on the base of DFT calculations. ESI-MS spectra of the solutions show formation of [[Ta4S9Br8]Br]- associates.  相似文献   

12.
In situ Raman and Fourier transform infrared (FTIR-NIR) spectroscopic studies on tetrahydrofuran (THF-C(4)H(8)O) clathrate hydrate (CH) were reported. The Raman results in lattice (64 cm(-1)), ring breathing and C-H stretching mode regions are in conformity with earlier reports, while the FTIR (NIR) studies in second order mode region were reported for the first time. Comparison of the results indicate that the band assigned to ring breathing mode around 922 cm(-1) (in Raman) and corresponding second order mode in NIR around 4295 cm(-1) broadens and shifts in enclathrated THF. The ring breathing mode at lower temperatures (T<120 K) is highly asymmetric and splits into two and are due to different host-guest interactions at lower temperatures.  相似文献   

13.
A pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to study the recombination of mercury and bromine atoms, Hg + Br + M --> HgBr + M (1) and the self-reaction of bromine atoms, Br + Br + M --> Br2 + M (2). Rate coefficients were determined as a function of pressure (200-600 Torr) and temperature (243-293 K) in nitrogen buffer gas and as a function of pressure (200-600 Torr) in helium buffer gas at room temperature. For reaction 1, kinetic measurements were performed under conditions in which bromine atoms were the reactant in excess concentration while simultaneously monitoring the concentration of both mercury and bromine. A temperature dependent expression of (1.46 +/- 0.34) x 10(-32) x (T/298)(-(1.86+/-1.49)) cm6 molecule(-2) s(-1) was determined for the third-order recombination rate coefficient in nitrogen buffer gas. The effective second-order rate coefficient for reaction 1 under atmospheric conditions is a factor of 9 smaller than previously determined in a recently published relative rate study. For reaction 2 we obtain a temperature dependent expression of (4.31 +/- 0.21) x 10(-33) x (T/298)(-(2.77+/-0.30)) cm6 molecule(-2) s(-1) for the third-order recombination rate coefficient in nitrogen buffer gas. The rate coefficients are reported with a 2sigma error of precision only; however, due to the uncertainty in the determination of absolute bromine atom concentrations and other unidentified systematic errors we conservatively estimate an uncertainty of +/-50% in the rate coefficients. For both reactions the observed pressure, temperature and buffer gas dependencies are consistent with the expected behavior for three-body recombination.  相似文献   

14.
The rate constants for the reactions of atomic bromine with dimethyl ether and diethyl ether were measured from approximately 300 to 350 K using the relative rate method. Both isooctane and isobutane were used as the reference reactants, and the rate constants for the reactions of these hydrocarbons were measured relative to each other over the same temperature range. The kinetic measurements were made by photolysis of dilute mixtures of bromine, the reference reactant, and the test reactant in mixtures of argon and oxygen at a total pressure of 1 atm. The resulting ratios of rate constants were combined with the absolute rate constant as a function of temperature for the reference reaction of Br with isobutane to calculate absolute rate constants for the reactions of Br with isooctane, dimethyl ether, and diethyl ether. The absolute rate constant, in the units cm3 molecule(-1) s(-1), for the reaction of Br with dimethyl ether was given by k = (3.8 +/- 2.4) x 10(-10) exp(-(3.54 +/- 0.21) x 10(3)/T) while for the reaction of Br with diethyl ether the rate constant is given by k = (2.8 +/- 2.7) x 10(-10) exp(-(2.44 +/- 0.32) x 10(3)/T). On the same basis, the rate constant for the reaction of Br with isooctane is given by k = (3.34 +/- 0.59) x 10(-12) exp(-(1.80 +/- 0.11) x 10(3)/T). In each case, the activation energy of the reaction is significantly smaller than the endothermicity of the reaction. This is discussed in terms of a complex mechanism for these reactions.  相似文献   

15.
Linear absorption spectra, resonance Raman spectra and excitation profiles, and two-photon-resonant hyper-Rayleigh and hyper-Raman scattering hyperpolarizability profiles are reported for the push-pull chromophore N,N-dipropyl-p-nitroaniline in seven solvents spanning a wide range of polarities. The absorption spectral maximum red shifts by about 2700 cm(-1), and the symmetric -NO2 stretch shifts to lower frequencies by about 11 cm(-1) from hexane to acetonitrile, indicative of significant solvent effects on both the ground and excited electronic states. The intensity patterns in the resonance Raman and hyper-Raman spectra are similar and show only a small solvent dependence except in acetonitrile, where both the Raman and hyper-Raman intensities are considerably reduced. Quantitative modeling of all four spectroscopic observables in all seven solvents reveals that the origin of this effect is an increased solvent-induced homogeneous broadening in acetonitrile. The linear absorption oscillator strength is nearly solvent-independent, and the peak resonant hyperpolarizability, beta(-2omega;omega,omega), varies by only about 15% across the wide range of solvents examined. These results suggest that the resonant two-photon absorption cross sections in this chromophore should exhibit only a weak solvent dependence.  相似文献   

16.
We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).  相似文献   

17.
The synthesis and spectroscopic characterisation of the products obtained by treatment of N,N'-dimethylimidazolidine-2-thione (1), N,N'-dimethylimidazolidine-2-selone (2), N,N'-dimethylbenzoimidazole-2-thione (3) and N,N'-dimethylbenzoimidazole-2-selone (4) with Br2 in MeCN are reported, together with the crystal structures of the 10-E-3, T-shaped adducts 2 . Br2 (12), 3 . Br2 (13) and 4 . Br2 (14). A conductometric and spectrophotometric investigation into the reaction between 1-4 and Br2, carried out in MeCN, allows the equilibria involved in the formation of the isolated 10-E-3 (E = S, Se) hypervalent compounds to be hypothesised. In order to understand the reasons why S and Se donors can give different product types on treatment with Br2 and I2, DFT calculations have been carried out on 1-8, 19 and 20, and on their corresponding hypothetical [LEX]+ cations (L = organic framework; E = S, Se; X = Br, I), which are considered to be key intermediates in the formation of the different products. The results obtained in terms of NBO charge distribution on [LEX]+ species explain the different behaviour of 1-8, 19 and 20 in their reactions with Br2 and I2 fairly well. X-ray diffraction studies show 12-14 to have a T-shaped (10-E-3; E = S, Se) hypervalent chalcogen nature. They contain an almost linear Br-E-Br (E = S, Se) system roughly perpendicular to the average plane of the organic molecules. In 12, the Se atom of each adduct molecule has a short interaction with the Br(1) atom of an adjacent unit, such that the Se atom displays a roughly square planar coordination. The Se-Br distances are asymmetric [2.529(1) vs. 2.608(1) A], the shorter distance being that with the Br(1) atom involved in the short intermolecular contact. In contrast, in the molecular adducts 13 and 14, which lie on a two-fold crystallographic axis, the Br-E-Br system is symmetric and no short intermolecular interactions involving chalcogen and bromine atoms are observed. The adducts are arranged in parallel planes; this gives rise to a graphite-like stacking. The new crystalline modification of 10, obtained from acetonitrile solution, confirms the importance of short intermolecular contacts in determining the asymmetry of Br-E-Br (E = S, Se) and I-Se-I groups in hypervalent 10-E-3 compounds. The analogies in the conductometric and spectrophotometric titrations of 1 and 2-4 with Br2, together with the similarity of the vibrational spectra of 11-14, also imply a T-shaped nature for 11. The vibrational properties of the Br-E-Br (E = S, Se) systems resemble those of the Br3- and IBr2- anions: the Raman spectrum of a symmetric Br-E-Br group shows only one peak near 160 cm(-1), as found for symmetric Br3- and IBr2- anions, while asymmetric Br-E-Br groups also show an antisymmetric Br-E-Br mode at around 190 cm(-1), as observed for asymmetric Br3- and IBr2- ions. Therefore, simple IR and Raman measurements provide a useful tool for distinguishing between symmetric and asymmetric Br-E-Br groups, and hence allow predictions about the crystal packing of these hypervalent chalcogen compounds to be made when crystals of good quality are not available.  相似文献   

18.
Optical-optical-optical triple-resonance spectroscopy of (11)BH isolates high Rydberg states that form series converging to rotational state specific ionization potentials in the vibrational levels of (11)BH(+) from nu(+)=0 through 4. Limits defined by a comprehensive fit of these series to state-detailed thresholds yield rovibrational constants describing the X (2)Sigma(+) state of (11)BH(+). The data provide a first determination of the vibrational-rotational interaction parameter alpha(e)=0.4821 cm(-1) and a more accurate estimate of omega(e)=2526.58 cm(-1) together with the higher-order anharmonic terms omega(e)x(e)=61.98 cm(-1) and omega(e)y(e)=-1.989 cm(-1). The deperturbation and global fit of series to state-detailed limits also yield a precise value of the adiabatic ionization potential of (11)BH of 79 120.3+/-0.1 cm(-1), or 9.810 33+/-1x10(-5) eV. High precision is afforded here by the use of graphical analysis techniques, narrow-bandwidth laser systems, and an analysis of newly observed, high principal quantum number Rydberg states that conform well with Hund's case (d) electron-core coupling limit.  相似文献   

19.
Single-crystal polarized Raman spectra (60-4000 cm(-1) at 3 < or = T < or = 295 K) were measured for chiral L- and racemic DL-serine, alpha-amino-beta-hydroxypropionic acid, (NH3)+CH(CH2OH)(COO)-. The Raman spectra of dl-serine do not show any striking changes with temperature or on storage. In contrast to that, the dynamical properties of L-serine change at about 140 K. These changes can be interpreted as the reorientation of the side chain -CH2OH fragments of the zwitterions with respect to the backbone C-C bonds, resulting in the positional disorder of the O-H...O intermolecular H-bonds. The redistribution in the intensities of the Raman spectra of the crystals of L-serine stored for a long time (about a year) indicates the changes in the orientation of the molecular fragments in the direction normal to the axes of the head-to-tail chains. The difference in the thermodynamic functions of L- and DL-serine reported previously [Drebushchak, V. A.; Kovalevskaya, Yu. A.; Paukov, I. E.; Boldyreva, E. V. J. Therm. Anal. Calorim. 2007, 89 (2), 649-654] is explained by the difference in the spectra of external vibrations of the crystals.  相似文献   

20.
The complex formation in water between the stable tricarbonyltriaqua fac-[(CO)(3)Re(H(2)O)(3)](+) (1) complex and N- and S-donor ligands has been studied by high-pressure (1)H NMR. Rate and equilibrium constants for the formation of [(CO)(3)Re(Pyz)(H(2)O)(2)](+), [(CO)(3)(H(2)O)(2)Re(mu-Pyz)Re(H(2)O)(2)(CO)(3)](2+), [(CO)(3)Re(THT)(H(2)O)(2)](+), and [(CO)(3)Re(DMS)(n)()(H(2)O)(3-n)](+) (n = 1-3) (Pyz = pyrazine, THT = tetrahydrothiophene, DMS = dimethyl sulfide) have been determined and are in accord with previous results (Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; K?lle, U.; Hall, S. Inorg. Chem. 2003, 42, 3516). The calculated interchange rate constant k(1)' (Eigen-Wilkins mechanism) increases from the hard O- and N-donors to the soft S-donors, as exemplified by the following series: TFA (trifluoroacetate) (k(1)' = 2.9 x 10(-3) s(-1)) < Br(-) < CH(3)CN < Pyz < THT < DMS < TU (thiourea) (k(1)' = 41.5 x 10(-3) s(-1)). On the other hand, values remain close to that of water exchange k(ex) on 1 (k(ex) = 6.3 x 10(-3) s(-1)). Thus, an I(d) mechanism was assigned, suggesting however the possibility of a slight deviation toward an associatively activated mechanism with the S-donor ligands. Activation volumes determined by high-pressure NMR, for Pyz as Delta V(++)(f,1) = +5.4 +/- 1.5, Delta V(++)(r,1) = +7.9 +/- 1.2 cm(3) mol(-)(1), for THT as Delta V(++)(f,1) = -6.6 +/- 1, Delta V(++)(r,1) = -6.2 +/- 1 cm(3) mol(-1), and for DMS as Delta V(++)(f,1) = -12 +/- 1, Delta V(++)(r,1) = -10 +/- 2 cm(3) mol(-1) revealed the ambivalent character of 1 toward water substitution. Hence, these findings are interpreted as a gradual changeover of the reaction mechanism from a dissociatively activated one (I(d)), with the hard O- and N-donor ligands, to an associatively activated one (I(a)), with the soft S-donor ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号