首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used high-level quantum mechanical calculations to determine the pucker (north type or south type) of various compounds: uridine, 2'-deoxyuridine, and 2'-O-methyl uridine. Although the dihedrals of the backbone are set close to their experimental values in double-stranded nucleic acids, calculations using density functional theory show that, in vacuo or in a continuum mimicking the dielectric properties of water, the south puckering conformations of uridine is favored. This contrasts with experimental data: most ribonucleosides inserted into a duplex have the north puckering. We show here that the north puckering is favored when an explicit water molecule is introduced into the calculation. The orientations of the 2' group and of the water molecule have implications for the prevalence of the north puckering. We studied several orientations of the water molecule binding uracil O2 and the 2' group and estimated the energy barriers in the path between the north-to-south conformations. The north puckering is more favored in 2'-OH than in 2'-OCH3 compounds in the presence of the explicit water molecule.  相似文献   

2.
The synthesis of the ribo(bc-rT)- and arabino(bc-araT)-version of bicyclothymidine (bc-dT) has been achieved. A conformational analysis by X-ray and/or (1)H NMR spectroscopy on the corresponding 3',5'-benzyl-protected nucleosides featured a rigid C(2')-endo conformation for the furanose ring, irrespective of the configuration of the OH group at C(2'). The conformation of the carbocyclic ring in these nucleosides was found to be less defined and thus more flexible. Both nucleosides were converted into the corresponding phosphoramidites and incorporated into oligodeoxynucleotides by standard DNA chemistry. T(m)-data of duplexes with cDNA and RNA revealed that a bc-rT unit strongly destabilized duplexes with cDNA and RNA by 6-8 °C/mod, while bc-araT was almost T(m) neutral. A rationale based on a previous structure of a bc-DNA mini duplex suggests that the strong destabilization caused by a bc-rT unit arises from unfavorable steric interactions of the equatorial 2'-OH group with the sugar residue of the 3'-neighboring nucleotide unit.  相似文献   

3.
A comprehensive conformational analysis of isolated 2'-beta-deoxy-6-azacytidine (d6AC), an analogue of therapeutically active 6-azacytidine (6AC), has been performed by means of ab initio calculations at the MP2/6-311++G(2df,pd)//DFT B3LYP/6-31G(d,p) level of theory. Among the 81 conformers located within a 7.83 kcal/mol Gibbs energy range at T = 298.15 K, 38 contain syn-oriented bases with respect to 2'-deoxyribose; the other conformers include anti-oriented bases. Energetic analysis of these conformers shows that conformational equilibrium of isolated d6AC at T = 298.15 K is shifted to syn conformation with a syn/anti ratio estimated as 61.4%:38.6%. As far as the sugar conformation is concerned, 40 conformers contain north (N) (with 0.3 degrees < or = P < or = 40.1 degrees), and the rest possess south (S) (with 157.1 degrees < or = P < or = 207.0 degrees) puckers, where P is the pseudorotational angle of the furanose ring. The S/N occupancy ratio is estimated as 80.2%:19.8% (T = 298.15 K). The two most stable conformers are energetically quasidegenerate and correspond to both C2'-endo/syn conformers differing only by orientation of the O3'H hydroxyl group. They are both stabilized by means of similar intramolecular H-bonds, i.e., O5'H...O2, C2'H2...O2, and C2'H2...O5'. As examined by AIM criteria, from 1 to 3 H-bonds per conformer were identified among 13 possible interactions: O5'H...O2, O5'H...N6, O3'H...O5', O5'H...O3', C1'H...O2, C2'H2...O2, C2'H2...O5', C3'H...O2, C3'H...N6, C5'H1...O2, C5'H2...O2, C5'H1...N6, and C5'H2...N6. The biological effect of d6AC is conceived as an inhibition of replicative DNA polymerase caused by an unusual orientation of the sugar residue against the base in the only A form DNA-like conformer.  相似文献   

4.
TNA (alpha-( l)-threofuranosyl-(3'-2') nucleic acid) is a nucleic acid in which the ribofuranose building block of the natural nucleic acid RNA is replaced by the tetrofuranose alpha-( l)-threose. This shortens the repetitive unit of the backbone by one bond as compared to the natural systems. Among the alternative nucleic acid structures studied so far in our laboratories in the etiological context, TNA is the only one that exhibits Watson-Crick pairing not only with itself but also with DNA and, even more strongly, with RNA. Using NMR spectroscopy, we have determined the structure of a duplex consisting entirely of TNA nucleotides. The TNA octamer (3'-2')-CGAATTCG forms a right-handed double helix with antiparallel strands paired according to the Watson-Crick mode. The dominant conformation of the sugar units has the 2'- and 3'-phosphodiester substituents in quasi-diaxial position and corresponds to a 4'-exo puckering. With 5.85 A, the average sequential P i -P i+1 distances of TNA are shorter than for A-type DNA (6.2 A). The helix parameters, in particular the slide and x-displacement, as well as the shallow and wide minor groove, place the TNA duplex in the structural vicinity of A-type DNA and RNA.  相似文献   

5.
The conformations of three 2',3'-difluoro uridine nucleosides were studied by X-ray crystallography, NMR spectroscopy, and ab initio calculations in an attempt to define the roles that the two vicinal fluorine atoms play in the puckering preferences of the furanose ring. Two of the compounds examined contained fluorine atoms in either the arabino or xylo dispositions at C2' and C3' of a 2',3'-dideoxyuridine system. The third compound also incorporated fluorine atoms in the xylo configuration on the furanose ring but was substituted with a 6-azauracil base in place of uracil. A battery of NMR experiments in D 2O solution was used to identify conformational preferences primarily from coupling constant and NOE data. Both (1)H and (19)F NMR data were used to ascertain the preferred sugar pucker of the furanose ring through the use of the program PSEUROT. Compound-dependent parameters used in the PSEUROT calculations were newly derived from complete sets of conformations calculated from high-level ab initio methods. The solution and theoretical data were compared to the conformations of each molecule in the solid state. It was shown that both gauche and antiperiplanar effects may be operative to maintain a pseudodiaxial arrangement of the C2' and C3' vicinal fluorine atoms. These data, along with previously reported data by us and others concerning monofluorinated nucleoside conformations, were used to propose a model of how fluorine influences different aspects of nucleoside conformations.  相似文献   

6.
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.  相似文献   

7.
8.
The structural and energetic determinants for kinking a basepair step by minor groove-insertion of the protein side chains of PurR, LacI, LEF-1, IHF, Sac7d, and Sso7d, have been calculated by molecular dynamics/potential of mean force simulations. The structural determinants of the kinked structures are: two contiguous furanose rings achieve different conformations, in the region of C3'endo (A-DNA) and C2'endo (B-DNA); the chi torsion angle always takes values characteristic of the C2'endo conformation of B-DNA, independently of sugar puckering; and protein side chain insertion increases slide (from negative to positive values), rise, and roll, and decreases twist. The energetic determinants of DNA kinking are: the conformational transition of the sugar-phosphate backbone is not energetically demanding; the relative importance of the interbase parameters in the free energy penalty is slide, followed by twist and rise, and concluding with shift and roll; and the characteristic increase of roll and decrease of twist, upon side chain insertion, tends to stabilize the process of DNA kinking.  相似文献   

9.
(L)-alpha-Threofuranosyl-(3'-->2')-oligonucleotides (TNA) containing vicinally connected phosphodiester linkages undergo informational base pairing in an antiparallel strand orientation and are capable of cross-pairing with RNA and DNA. TNA is derived from a sugar containing only four carbon atoms and is one of the simplest potentially natural nucleic acid alternatives investigated thus far in the context of a chemical etiology of nucleic acid structure. Compared to DNA and RNA that contain six covalent bonds per repeating nucleotide unit, TNA contains only five. We have determined the atomic-resolution crystal structure of the B-form DNA duplex [d(CGCGAA)Td(TCGCG)](2) containing a single (L)-alpha-threofuranosyl thymine (T) per strand. In the modified duplex base stacking interactions are practically unchanged relative to the reference DNA structure. The orientations of the backbone at the TNA incorporation sites are slightly altered in order to accommodate fewer atoms and covalent bonds. The conformation of the threose is C4'-exo with the 2'- and 3'-substituents assuming quasi-diaxial orientation.  相似文献   

10.
The structures of the isomeric nucleosides 4‐nitro‐1‐(β‐d ‐ribo­furan­osyl)‐1H‐indazole, C12H13N3O6, (I), and 4‐nitro‐2‐(β‐d ‐ribo­furan­osyl)‐2H‐indazole, C12H13N3O6, (II), have been determined. For compound (I), the conformation of the gly­cosylic bond is anti [χ = −93.6 (6)°] and the sugar puckering is C2′‐exo–C3′‐endo. Compound (II) shows two conformations in the crystalline state which differ mainly in the sugar pucker; type 1 adopts the C2′‐endo–C3′‐exo sugar puckering associated with a syn base orientation [χ = 43.7 (6)°] and type 2 shows C2′‐exo–C3′‐endo sugar puckering accompanied by a somewhat different syn base orientation [χ = 13.8 (6)°].  相似文献   

11.
A Pseudo-Rotational Online Service and Interactive Tool (PROSIT) designed to perform complete pseudorotational analysis of nucleosides and nucleotides is described. This service is freely available at http://cactus.nci.nih.gov/prosit/. Files containing nucleosides/nucleotides or DNA/RNA segments, isolated or bound to other molecules (e.g., a protein) can be uploaded to be processed by PROSIT. The service outputs the pseudorotational phase angle P, puckering amplitude numax, and other related information for each nucleoside/nucleotide detected. The service was implemented using the chemoinformatics toolkit CACTVS. PROSIT was used for a survey of nucleosides contained in the Cambridge Structural Database and nucleotides in high-resolution crystal structures from the Nucleic Acid Database. Special cases discussed include nucleosides having constrained sugar moieties with extreme puckering amplitudes, and several specific DNA/RNA helices and protein-bound DNA oligonucleotides (Dickerson-Drew dodecamer, RNA/DNA hybrid viral polypurine tract, Z-DNA enantiomers, B-DNA containing (L)-alpha-threofuranosyl nucleotides, TATA-box binding protein/TATA-box complex, and DNA (cytosine C5)-methyltransferase complexed with an oligodeoxyribonucleotide containing transition state analogue 5,6-dihydro-5-azacytosine). When the puckering amplitude decreases to a small value, the sugar becomes increasingly planar, thus reducing the significance of the phase angle P. We introduce the term "central conformation" to describe this part of the pseudorotational hyperspace in contrast to the conventional north and south conformations.  相似文献   

12.
The synthesis and conformational analysis of 2'-O,5-dimethyluridylyl(3'-5')-2'-O,5-dimethyluridine (1a), the analogue of thymidylyl(3'-5')thymidine (TpT; 1b) in which a methoxy group replaces each 2'-alpha-hydrogen atom, are described. In comparison with TpT, such modification increases the population of the C3'-endo conformer of the sugar ring puckering at the 5'- and 3'-ends from 30 to 75% and from 37 to 66%, respectively. Photolyses of 1a and TpT at 254 nm are qualitatively comparable (the cis-syn cyclobutane pyrimidine dimer and the (6-4) photoproduct are formed), although it is significantly faster in the case of 1a. These results are explained by the increased propensity of the modified dinucleotide to adopt a base-stacked conformation geometry reminiscent of that for TpT.  相似文献   

13.
In order to understand how the chemical nature of the conformational constraint of the sugar moiety in ON/RNA(DNA) dictates the duplex structure and reactivity, we have determined molecular structures and dynamics of the conformationally constrained 1',2'-azetidine- and 1',2'-oxetane-fused thymidines, as well as their 2',4'-fused thymine (T) counterparts such as LNA-T, 2'-amino LNA-T, ENA-T, and aza-ENA-T by NMR, ab initio (HF/6-31G** and B3LYP/6-31++G**), and molecular dynamics simulations (2 ns in the explicit aqueous medium). It has been found that, depending upon whether the modification leads to a bicyclic 1',2'-fused or a tricyclic 2',4'-fused system, they fall into two distinct categories characterized by their respective internal dynamics of the glycosidic and the backbone torsions as well as by characteristic North-East type sugar conformation (P = 37 degrees +/- 27 degrees , phi(m) = 25 degrees +/- 18 degrees ) of the 1',2'-fused systems, and (ii) pure North type (P = 19 degrees +/- 8 degrees , phi(m) = 48 degrees +/- 4 degrees ) for the 2',4'-fused nucleosides. Each group has different conformational hyperspace accessible, despite the overall similarity of the North-type conformational constraints imposed by the 1',2'- or 2',4'-linked modification. The comparison of pK(a)s of the 1-thyminyl aglycon as well as that of endocyclic sugar-nitrogen obtained by theoretical and experimental measurements showed that the nature of the sugar conformational constraints steer the physicochemical property (pK(a)) of the constituent 1-thyminyl moiety, which in turn can play a part in tuning the strength of hydrogen bonding in the basepairing.  相似文献   

14.
Two novel trans-3′,4′-bridged nucleic acid (trans-3′,4′-BNA) monomers, one with a 3,5,8-trioxabicyclo[5.3.0]decane structure and the other with a 4,7-dioxabicyclo[4.3.0]nonane structure, were successfully synthesized from thymidine. The locked trans-fused ring structures of the nucleoside analogues were confirmed by X-ray crystallography, which also indicated that their furanose rings had a typical S-type conformation involving C2′-endo or C3′-exo sugar puckering, respectively, and the same ring conformation as that observed in the B-type helical structure of the DNA duplex.  相似文献   

15.
[structures: see text] The synthesis of novel 1',2'-aminomethylene bridged (6-aza-2-oxabicyclo[3.2.0]heptane) "azetidine" pyrimidine nucleosides and their transformations to the corresponding phosphoramidite building blocks (20, 39, and 42) for automated solid-phase oligonucleotide synthesis is reported. The novel bicyclonucleoside "azetidine" monomers were synthesized by two different strategies starting from the known sugar intermediate 6-O-benzyl-1,2:3,4-bis-O-isopropylidene-D-psicofuranose. Conformational analysis performed by molecular modeling (ab initio and MD simulations) and NMR showed that the azetidine-fused furanose sugar is locked in a North-East conformation with pseudorotational phase angle (P) in the range of 44.5-53.8 degrees and sugar puckering amplitude (phi(m)) of 29.3-32.6 degrees for the azetidine-modified T, U, C, and 5-Me-C nucleosides. Thermal denaturation studies of azetidine-modified oligo-DNA/RNA heteroduplexes show that the azetidine-fused nucleosides display improved binding affinities when compared to that of previously synthesized North-East sugar constrained oxetane fused analogues.  相似文献   

16.
The chemical names of a pair of recently synthesized antitumor drugs are given in the present study as 1',2'-didehydro-3',4'-deoxycytidine and 3',4'-didehydro-2',4'-deoxycytidine. The order of stabilities, geometries, and ionization potentials of the unsaturated sugar-modified cytidine derivatives is investigated quantum mechanically. Our density functional theory calculations based on the B3LYP/6-311++G** model reveal that 3',4'-didehydro-2',4'-deoxycytidine (SD-C2) is slightly more stable than its isomer, 1',2'-didehydro-3',4'-deoxycytidine, by an energy of 5.28 kJ x mol(-1) in isolation. The isomers structurally differ by only the C=C location in the sugar ring. However, the compounds exhibit an unusual orientation with a less puckered sugar ring; that is, 3',4'-didehydro-2',4'-deoxycytidine is determined to be a beta-nucleoside, which is a C1'-endo, north conformer with an anticlinal sugar ring, whereas 1',2'-didehydro-3',4'-deoxycytidine is neither an alpha-nucleoside nor a beta-nucleoside but is a C4'-endo, south conformer with an antiperiplanar sugar ring. The present study further indicates that the C=C double bond location imposes significant effects on their ionization potentials (IPs) and other important molecular properties such as molecular electrostatic potential (MEP). In addition, inner shell binding energy spectral variations with respect to the C=C bond exhibit more site dependence. The valence shell binding energy spectral changes are, on the other hand, significant and delocalized. The latter indicates that such changes in valence space are not isolated effects but are within the entire nucleoside. Finally, the present study suggests that the nearly 0.6 eV difference in the first ionization potentials (highest occupied molecular orbital) of the isomers is sufficiently large to identify them by further spectroscopic measures.  相似文献   

17.
The conformation of the 7-bromo- and 7-iodo-substituted 8-aza-7-deazapurine nucleosides 1 and 2 in the solid state and in aqueous solution was studied by single-crystal X-ray analyses and by 1H-NMR spectroscopy. In the solid state, both compounds display a high-anti conformation around the glycosylic bond, and their 2′-deoxy-β-D -ribofuranose moieties adopt an N-type sugar puckering. The orientation of the exocyclic C(4′)−C(5′) bond was found to be ap in both cases. In D2O solution, both compounds display i) an 8 – 10% higher N-conformer population than 2′-deoxyguanosine and ii) a preference of the −sc conformation about the C(4′)−C(5′) bond. A comparative study on the influence of modified bases on the sugar structure of nucleosides is made.  相似文献   

18.
We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.  相似文献   

19.
The crystal and molecular structures of carbon-bridged 6,5'-cyclo-5'-deoxy-4-thiouridine (6,5'-Cs4U), 6,5'-cyclo-5'-deoxy-2',3'-O-isopropylideneuridine (6,5'-CiU) and 6,6'-cyclo-5',6'-dideoxy-allofuranosyluracil (6,6'-CU) have been determined by X-ray diffraction. The molecular conformations of 6,5'-Cs4U and 6,5'-CiU are very similar; the conformation about the glycosidic bond is anti (low region), the torsion angle O(4')-C(1')-N(1)-C(2) being -150.0 degrees for 6,5'-Cs4U and -145.5 degrees for 6,5'-CiU, and the sugar puckering being both O(4')-exo. On the other hand, 6,6'-CU takes the glycosidic torsion angle of -116.9(4) degrees (middle anti region) and the sugar conformation of C(4')-endo. The cyclization causes little alteration in the geometry of the base moiety. 6,5'-Cs4U and 6,5'-CiU exhibit the similar base-base interactions between adjacent molecules, although their molecular packings are quite different; the 4-thiouracil or uracil moiety interacts with adjacent base moieties through hydrogen bonding and stacking interactions. In 6,6'-CU, cyclonucleosides were connected by hydrogen bondings between the hydroxyl and sugar ring oxygen atoms and between the hydroxyl groups and the base nitrogen and oxygen atoms. As the 2',3'-cyclic phosphates of these carbon-bridged cyclonucleosides are hydrolyzed by ribonuclease A, it is suggested that the conformers found in these cyclonucleosides are recognized by the enzyme.  相似文献   

20.
NMR spectroscopy has been used to investigate the conformational effects of single and two consecutive 3'-S-phosphorothiolate modifications within a deoxythymidine trinucleotide. The presence of a single 3'-phosphorothioate modification shifts the conformation of the sugar ring it is attached to, from a mainly south to north pucker; this effect is also transmitted to the 3'-neighbour deoxyribose. This transmission is thought to be caused by favourable stacking of the heterocyclic bases. Similar observations have been made previously by this group. When two adjacent modifications are present, the conformations of the attached deoxyribose rings are again shifted almost completely to the north, however, there is no transmission to the 3' deoxyribose ring. Base proton chemical shift analysis and molecular modelling have been used to aid elucidation of the origin of this feature. The observation for the dimodified sequence is consistent with our previously reported results for a related system in which spaced modifications are more thermodynamically stable than consecutive ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号