首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free-volume theory for understanding depletion phenomena in mixtures of two species is generally derived using scaled-particle theory for those specific entities. Here we first give a general scaled-particle method for convex bodies in terms of the characteristic geometrical measures of the depletion agent, i.e., its volume, surface area, and integrated mean curvature, in mixtures with hard spheres. Second, we show that similar results can be derived from fundamental-measure theory. This different approach allows us to get a deep insight into the meaning of the various contributions to the theory from a geometrical point of view. From these two methods we arrive at a generalized "recipe" to free-volume theory. This recipe can be based on a desired equation of state for any convex shape of the depletion agents and is also valid for (polydisperse) mixtures of those. This is illustrated by mixtures of spheres with ellipsoids, spheres with several geometries as models for disklike mesogens, e.g., gibbsite, as well as depletion of spheres due to bar-shaped colloids, e.g., goethite.  相似文献   

2.
The authors study the phase behavior of mixtures of monodisperse colloidal spheres with a depletion agent which can have arbitrary shape and can possess a polydisperse size or shape distribution. In the low concentration limit considered here, the authors can employ the free-volume theory and take the geometry of particles of the depletion agent into account within the framework of fundamental measure theory. The authors apply their approach to study the phase diagram of a mixture of (monodisperse) colloidal spheres and two polydisperse polymer components. By fine tuning the distribution of the polymer, it is possible to construct a complex phase diagram which exhibits two stable critical points.  相似文献   

3.
The depletion force and depletion potential between two in principle unequal "big" hard spheres embedded in a multicomponent mixture of "small" hard spheres are computed using the rational function approximation method for the structural properties of hard-sphere mixtures [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)]. The cases of equal solute particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere fluid are explicitly analyzed. An improvement over the performance of the Percus-Yevick theory and good agreement with available simulation results are found.  相似文献   

4.
《Fluid Phase Equilibria》2006,239(1):91-99
Using our previously proposed matrix method, an equation of state for hard spheres is presented, which can reproduce the exact values of the first-eight virial coefficients. This equation meets both the low density and the close-packed limits and can predicts the first order fluid–solid phase transition of hard spheres. The results obtained show that the new equation of state can correlate the simulation data of compressibility factor up to high densities better than other equations of state.The new equation of state is extended to mixtures of hard spheres and excess functions of various binary liquid mixtures are calculated using the perturbation theory of Leonard–Henderson–Barker. The results are compared with existing theoretical and experimental data and with those calculated by other hard-sphere equations of state.It is seen that the results obtained by the new equation of state is quite satisfactory compared to other equations of state for the hard spheres and mixture of hard spheres.  相似文献   

5.
The thermodynamic properties of mixtures of hard spheres with imbedded point dipoles are investigated by an extension of the perturbation theory used by Rushbrooke et al. for pure fluids. Equations are presented for the general multicomponent mixture in which all the hard spheres have the same diameter. Numerical calculations are presented of the phase behaviour and excess thermodynamic mixing functions for the special case of the binary mixture in which only one species is polar. A brief discussion is given of the relationship of this model to experimental results for real fluid mixtures and of possible extensions of this work.  相似文献   

6.
The purpose of this short paper is to present an alternative fundamental measure theory (FMT) for hard sphere mixtures. Keeping the main features of the original Rosenfeld's FMT [Phys. Rev. Lett. 63, 980 (1989)] and using the dimensional and the low-density limit conditions a new functional is derived incorporating Boublik's multicomponent extension [Mol. Phys. 59, 371 (1986)] of highly accurate Kolafa's equation of state for pure hard spheres. We test the theory for pure hard spheres and hard sphere mixtures near a planar hard wall and compare the results with the original Rosenfeld's FMT and one of its modifications and with new very accurate simulation data. The test reveals an excellent agreement between the results based on the alternative FMT and simulation data for density profile near a contact and some improvement over the original Rosenfeld's FMT and its modification at the contact region.  相似文献   

7.
The critical properties of hydrocarbon mixtures, perfluorocarbon + hydrocarbon, perfluoromethylcyclohexane + siloxane, acetone + hydrocarbon and polydimethyl siloxane mixtures have been calculated from an equation of state for hard convex bodies and from Guggenheim's equation of state for hard spheres. In general, the results of both equations agree well with experimental data.It appears, however, that taking shape factors into account (by using the hard convex body equation) does not lead to a significant improvement in the agreement between theory and experiment for the critical properties.  相似文献   

8.
Naive mode coupling theory (NMCT) and the nonlinear stochastic Langevin equation theory of activated dynamics have been generalized to mixtures of spherical particles. Two types of ideal nonergodicity transitions are predicted corresponding to localization of both, or only one, species. The NMCT transition signals a dynamical crossover to activated barrier hopping dynamics. For binary mixtures of equal diameter hard and attractive spheres, a mixture composition sensitive "glass-melting" type of phenomenon is predicted at high total packing fractions and weak attractions. As the total packing fraction decreases, a transition to partial localization occurs corresponding to the coexistence of a tightly localized sticky species in a gel-like state with a fluid of hard spheres. Complex behavior of the localization lengths and shear moduli exist because of the competition between excluded volume caging forces and attraction-induced physical bond formation between sticky particles. Beyond the NMCT transition, a two-dimensional nonequilibrium free energy surface emerges, which quantifies cooperative activated motions. The barrier locations and heights are sensitive to the relative amplitude of the cooperative displacements of the different species.  相似文献   

9.
An equation of state for the multicomponent fluid phase of nonattracting rigid particles of arbitrary shape is presented. The equation is a generalization of a previously presented equation of state for pure fluids of rigid particles; the approach describes the volumetric properties of a pure fluid in terms of a shape factor, zeta, which can be back calculated by scaling the volumetric properties of pure fluids to that of a hard sphere. The performance of the proposed equation is tested against mixtures of chain fluids immersed in a "monomeric" solvent of hard spheres of equal and different sizes. Extensive new Monte Carlo simulation data are presented for 19 binary mixtures of hard homonuclear tangent freely-jointed hard sphere chains (pearl-necklace) of various lengths (three to five segments), with spheres of several size ratios and at various compositions. The performance of the proposed equation is compared to the hard-sphere SAFT approach and found to be of comparable accuracy. The equation proposed is further tested for mixtures of spheres with spherocylinders. In all cases, the equation proved to be accurate and simple to use.  相似文献   

10.
The scaled particle theory is solved for mixtures of hard spheres with arbitrary negative non-additive diameters in three dimensions. The results obtained with the Gibbs—Duhem relation show excellent agreement with the Monte-Carlo calculations. The results from the virial relation for high densities and high non-additivity are less satisfactory.  相似文献   

11.
We perform a theoretical study of the three-phase contact line and the line tension in an adsorbed colloid-polymer mixture near a first-order wetting transition, employing an interface displacement model. We use a simple free-energy functional to describe a colloid-polymer mixture near a hard wall. The bulk phase behavior and the substrate-adsorbate interaction are modeled by the free-volume theory for ideal polymers. The large size of the colloidal particles and the suppression of the van der Waals interaction by optical matching of colloid and solvent justify the planar hard wall model for the substrate. Following the Fisher-Jin scheme, we derive from the free-energy functional an interface potential V(l) for these mixtures. For a particle diameter of 10-100 nm, the calculations indicate a line tension tau approximately 10(-12)-10(-13) N at room temperature. In view of the ultralow interfacial tension in colloid-polymer mixtures, gamma approximately 10(-7) Nm, this leads to a rather large characteristic length scale taugamma in the micrometer range for the three-phase contact zone width. In contrast with molecular fluids, this zone could be studied directly with optical techniques such as confocal scanning laser microscopy.  相似文献   

12.
The model of hindered rotation of molecules was used to calculate the internal energy of mixtures of dipolar hard spheres. A comparison of the analytic equations obtained with the data of Monte Carlo simulations and hypernetted chain theory calculations showed the importance of various correlation effects caused by electrostatic and steric forces.  相似文献   

13.
A new algorithm for solving integral equations of the theory of liquids at fixed pressure is introduced. Combining this technique with the Lee's star function approximation for the chemical potentials, we obtain an efficient method to investigate fluid-phase diagrams of binary mixtures. We have tested the capabilities of such technique to study symmetric and asymmetric phase diagrams in nonadditive hard spheres and Lennard-Jones mixtures. We find that the integral equation theories, although approximate, can provide a flexible tool to determine the fluid-phase diagrams whose accuracy is critically dependent on the quality of the closure and of the resulting chemical potentials.  相似文献   

14.
A series of polyurethane films based on hard segments consisting of toluene diisocyanate and 1,4-butanediol and different soft segments consisting of hydroxyl terminated polybutadiene, hydroxyl terminated polybutadiene/styrene and hydroxyl terminated polybutadiene/acrylonitrile were synthesized by solution polymerization separately. Positron annihilation lifetimes were measured at room temperature for all samples studied. We found that both the free volume size and fractional free-volume decreased with the increase of hard segment content. On the other hand, direct relationship between the gas permeability and the free-volume has been established based on the free-volume parameters and gas diffusivity measured. Experimental results revealed that the free-volume plays an important role in determining the gas permeability.  相似文献   

15.
We study the structure and interfacial properties of model athermal mixtures of colloids and excluded volume polymers. The colloid particles are modeled as hard spheres whereas the polymer coils are modeled as chains formed from tangentially bonded hard spheres. Within the framework of the nonlocal density functional theory we study the influence of the chain length on the surface tension and the interfacial width. We find that the interfacial tension of the colloid-interacting polymer mixtures increases with the chain length and is significantly smaller than that of the ideal polymers. For certain parameters we find oscillations on the colloid-rich parts of the density profiles of both colloids and polymers with the oscillation period of the order of the colloid diameter. The interfacial width is few colloid diameters wide and also increases with the chain length. We find the interfacial width for the end segments to be larger than that for the middle segments and this effect is more pronounced for longer chains.  相似文献   

16.
Hard-sphere mixtures provide one a solvable reference system that can be used to improve the density functional theory of realistic molecular fluids. We show how the Kierlik-Rosinberg's scalar version of the fundamental measure density functional theory of hard spheres [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], which presents computational advantages with respect to the original Rosenfeld's vectorial formulation or its extensions, can be implemented and minimized in three dimensions to describe fluid mixtures in complex environments. This implementation is used as a basis for defining a molecular density functional theory of water around molecular hydrophobic solutes of arbitrary shape.  相似文献   

17.
An equation of state for a multicomponent mixture of nonadditive hard spheres in d dimensions is proposed. It yields a rather simple density dependence and constitutes a natural extension of the equation of state for additive hard spheres proposed by us [A. Santos, S. B. Yuste, and M. Lopez de Haro, Mol. Phys. 96, 1 (1999)]. The proposal relies on the known exact second and third virial coefficients and requires as input the compressibility factor of the one-component system. A comparison is carried out both with another recent theoretical proposal based on a similar philosophy and with the available exact results and simulation data in d=1, 2, and 3. Good general agreement with the reported values of the virial coefficients and of the compressibility factor of binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.  相似文献   

18.
A density functional and Monte Carlo simulation study of end-grafted polymers immersed by simple fluids is presented. The polymer molecules are modeled as freely jointed tangent hard spheres with the end segments linked to the surface. The authors analyze an influence of the chain length, the grafting density, and a nature of solvent on the brush structure. Adsorption of hard-sphere mixtures on the modified surface is also discussed. The theory precisely approximates simulation data.  相似文献   

19.
The second-order integral-equation formalism of [Attard J. Chem. Phys. 91, 3072 (1989); 95, 4471 (1991)], applied previously to one-component hard spheres and Lennard-Jones fluids, as well as to their mixtures, is used to binary Widom-Rowlinson mixtures. Comparison with Monte Carlo simulations of the pair correlation functions and of the demixing phase diagram shows that this method is also quite accurate in the case of highly nonadditive mixtures. Moreover, the results of the second-order theory are compared with previous theoretical predictions. Our interest is also in the calculation of the bridge functions, i.e., parts of the radial distribution functions either not included or simply approximated in the usual theories.  相似文献   

20.
The Carnahan—Starling equation of state for hard spheres can be extended to mixtures using either a one-fluid theory, or the generalization of scaled-particle (or Percus—Yevick theory) proposed by Boublik and by Mansoori and coworkers. The two reference systems are combined with a perturbation term of the van der Waals form; they are then used to correlate the phase behavior of binary mixtures of nonpolar molecules differing significantly in molecular size. In each case, one adjustable binary parameter (a12) is used to correlate vapor—liquid equilibria over the entire composition range. Predicted Henry's constants and liquid densities for the saturated mixture are compared with experiment. The Boublik—Mansoori hard-sphere-mixture equation is superior to the Carnahan—Starling One-Fluid theory, expecially in the dilute region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号