首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Erbium (Er3+) 0.5% mol doped barium titanate (BaTiO3) thin films were elaborated via sol–gel method and dip-coating technique using titanium alkoxide and barium pentanedionate. Two syntheses were performed [with and without polyvinylpyrrolidone (PVP)] in order to obtain thick films. The BaTiO3:Er3+ thin films prepared from the sol with PVP were elaborated with 1 layer and those without PVP and were elaborated with 17 layers. In both cases, the films were deposited on silica quartz substrates. Both BaTiO3:Er3+ films presented a cubic phase, as determined by X-ray diffraction. BaTiO3:Er3+ films elaborated with PVP via single-step dip coating produced crack-free films with thicknesses of ~800 nm. SEM micrographs for the obtained BaTiO3:Er3+ films revealed high homogeneity and density. Mapping images obtained from BaTiO3:Er3+ revealed homogeneous distribution of Er3+ ions on the surface. XPS analyses of the chemical state and chemical environment of the constituent elements in the compositions showed that Er3+ ions in (Ba1−x Er x )TiO3 are in mixed valence of Er3+/Er2+. The BaTiO3:Er3+-PVP film exhibited luminescent properties under near-infrared excitation, as revealed by green emissions. The BaTiO3:Er3+-PVP film has good potential for optical applications.  相似文献   

2.
The preparation of a co-doped BaTiO3:Er, Yb compound was investigated using alkoxide precursors. The complex alkoxide was hydrolyzed under specific conditions using chelating agents [(AcAc)H and H–(OAc)], and nano-size powders and films of perovskite compounds were obtained. The nanostructure materials were formed through nucleation-aggregation growth. Through a comparison of co-doped BaTiO3:Er, Yb compounds (with and without chelating agents), important differences in shape and size of the particles were found. In addition, the use of chelating agents during the sol–gel process allowed us to obtain optical BaTiO3:Er, Yb thin films. The results suggest that the particle size and shape can be tailored in the current system by manipulating the simultaneous use of chelating agents and the crystallization temperature. Consequently, a wide range of particle size has an effect on the crystal structures.  相似文献   

3.
武德珍 《高分子科学》2014,32(4):424-431
Triphase polyimide nanocomposite films were fabricated using barium titanate (BaTiO3) with high dielectric constant and silver (Ag) with high conductivity as fillers. In situ method was utilized to obtain the homogeneous dispersion of nanoparticles. The in situ polymerization of polyimide precursor-poly(amic acid) was performed in the presence of BaTiO3 particles. Silver compound 1,1,1-trifluoro-2,4-pentadionato silver(I) was added into the BaTiO3 containing poly(amic acid) solution to achieve silver nanoparticles via in situ self metallization technique. The thermally induced reduction converted silver (I) to metallic silver with concomitant imidization of poly(amic acid) to polyimide. Both BaTiO3 and silver nanoparticles were uniformly dispersed in the polyimide substrate. The dependence of dielectric behavior on the BaTiO3 and Ag contents was studied. The incorporation of small amount of silver nanoparticles greatly increased dielectric constant of composite films.  相似文献   

4.
Investigation of the solvent and alkoxide precursor effect on the nonhydrolytic sol–gel synthesis of oxide nanoparticles by means of an ether elimination (Bradley) reaction indicates that the best crystallinity of the resulting oxide particles is achieved on application of aprotic ketone solvents, such as acetophenone, and of smallest possible alkoxide groups. The size of the produced primary particles is always about 5 nm caused by intrinsic mechanisms of their formation. The produced particles, possessing the composition of natural highly insoluble minerals, are biocompatible. Optical characteristics of the perovskite complex oxide nanoparticles can easily be controlled through doping with rare earth cations; for example, by Eu3+. They can be targeted through surface modification by anchoring the directing biomolecules through a phosphate or phosphonate moiety. Testing of the distribution of Eu‐doped BaTiO3 particles, modified with ethylphosphonic acid, demonstrates their facile uptake by the plants with active fluid transport, resulting finally in their enhanced concentration within the cell membranes.  相似文献   

5.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

6.
Summary: Polyaniline (PANI) composites were prepared with both unmodified and amine modified MWCNTs with and without BaTiO3 through in-situ oxidative polymerization. Uniform coating of PANI on the MWCNTs and BaTiO3 surfaces was found which was evident from the Field Emission Scanning Electron Microscopic (FESEM) and High Resolution Transmission Electron Microscopic (HRTEM) images. The structure of pure and amine modified MWCNTs was identified by Fourier Transform Infrared Spectroscopy (FTIR). The thermal stability of the amine modified composite with BaTiO3 is higher than that of the unmodified composite because of the better affinity between modified MWCNTs and polymer matrix and due to the higher stability of barium titanate itself. The capacitance of amine modified MWCNTs and BaTiO3 composites was less than that of the pure MWCNTs composites but the thermal stability increased in amine modified MWCNTs and BaTiO3 composites with respect to the pure MWCNTs composites. The maximum capacitance and energy density values were found in MWCNT/PANI composites which were equal to 523.20 F/g and 142.83 Wh/kg respectively at a scan rate of 10mv/s. Maximum power density was found to be 5147.70 W/kg in the same composite at a scan rate of 200 mv/s.  相似文献   

7.
Nano sized crystalline particles/polymer hybrids were synthesized form designed metal-organic precursors. The newly developed method is composed of the synthesis of organic matrix by polymerization and the in situ nucleation and growth of crystalline oxide particles in the organic matrix below 100°C. The design of metal-organic precursor modified with polymerizable ligand and the selection of reaction conditions does influence the size and crystallinity of ceramic particles in organic matrix. The nano-sized magnetic particle/polymer hybrid exhibits the interesting feature of superparamagnetism and quantum size effect. The crystalline particles of BaTiO3/, PbTiO3/, and KNbO3/polymer hybrids behave to be dielectric and show the typical electro-rheological behavior.  相似文献   

8.
Core‐shell structured barium titanate‐poly(glycidyl methacrylate) (BaTiO3‐PGMA) nanocomposites were prepared by surface‐initiated atom transfer radical polymerization of GMA from the surface of BaTiO3 nanoparticles. Fourier transform infrared spectroscopy confirmed the grafting of the PGMA shell on the surface of the BaTiO3 nanoparticles cores. Transmission Electron Microscopy results revealed that BaTiO3 nanoparticles are covered by thin brushes (~20 nm) of PGMA forming a core‐shell structure and thermogravimetric analysis results showed that the grafted BaTiO3‐PGMA nanoparticles consist of ~13.7% PGMA by weight. Upon incorporating these grafted nanoparticles into 20 μm‐thick films, the resultant BaTiO3‐PGMA nanocomposites have shown an improved dielectric constant (ε = 54), a high breakdown field strength (~3 MV/cm) and high‐energy storage density ~21.51 J/cm3. AC conductivity measurements were in good agreement with Jonscher's universal power law and low leakage current behavior was observed before the electrical breakdown field of the films. Improved dielectric and electrical properties of core‐shell structured BaTiO3‐PGMA nanocomposite were attributed to good nanoparticle dispersion and enhanced interfacial polarization. Furthermore, only the surface grafted BaTiO3 yielded homogenous films that were mechanically stable. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 719–728  相似文献   

9.
为了提高BaTiO3粒子在含水复合弹性体中的电场响应能力,本文采用简单的水热合成法,在不引入任何表面活性剂的情况下,仅通过对反应温度和溶液pH值的调控获得了新颖形貌的钛酸钡粒子。通过借助X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)及接触角(Contact Angle)测量等手段对粒子的微观结构和表面特性进行表征发现:该粒子为高纯四方相枝晶簇结构,具有良好的亲水性,而且在含水复合弹性体中对电场具有优良的响应能力。  相似文献   

10.
反相微乳液法合成纳米钛酸钡球形颗粒   总被引:10,自引:0,他引:10       下载免费PDF全文
0引言BaTiO3陶瓷是一种具有高介电常数及优良的铁电、压电和绝缘性能的电子陶瓷材料。不仅是重要的电子陶瓷、PTC陶瓷原料[1],而且也是制备多层陶瓷电容器(M LC C)的必要组分[2,3]。随着现代科学技术的发展,人们更注重材料颗粒的大小和形貌,当材料的粒径达到纳米级时,材料的性能将发生很大的变化。另外,这种具有纳米尺度、球形颗粒的电子陶瓷材料,可能还具有一些新的物理作用,具有潜在的应用价值。B aTiO3粉体的制备方法有:固相煅烧法、化学共沉淀法、溶胶-凝胶法、水热法[4 ̄11]等。固相法反应温度高(一般1000 ̄1200℃)、反应活性差…  相似文献   

11.
Sol-gel synthesis of nano-sized BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 ceramics using alkoxide and semi-alkoxide routes has been investigated and the pervoskites obtained have been compared with respect to crystallisation temperature, crystallite size and compositional purity. Heterometal alkoxides containing two (for BaTiO3 and BaZrO3) and three (for BaTi0.5Zr0.5O3) different metals were used as single-source precursors in the alkoxide route while semi-alkoxide synthesis was performed by reacting barium hydroxide or acetate with Ti and/or Zr alkoxides. Semi-alkoxide synthesis also produces stoichiometric and phase-pure oxides, however, at temperatures higher than 1000°C. At temperatures below 1000°C, BaCO3 and small amounts of other undesired phases (e.g., BaTi2O4) were present in the oxides derived from semi-alkoxide synthesis. Thermal behaviour, studied by TGA/DTA measurements, shows that thermal decomposition occurs in three major steps and depends on the educt composition and the synthesis route. Among alkoxide derived powders, crystalline BaTi0.5Zr0.5O3 phase is formed at 400°C while complete crystallisation of BaMO3 ceramics occurs around 600°C. The cubic to tetragonal phase transition for BaTiO3 is clearly observed at relatively low-temperature of 800°C. The stoichiometry and phase homogeneity of the obtained powders were demonstrated by energy dispersive X-ray analysis and powder diffractometry. The averaged crystallite size of the obtained nano-ceramics was evaluated using the FormFit programme. SEM and TEM observations revealed a high microstructural uniformity.  相似文献   

12.
Piezoelectric elastomers were prepared from suspensions of bariumtitanate (BaTiO3) particles in a telechelic polydimethylsiloxane (t-PDMS) by crosslinking the t-PDMS under an electric field. Crosslinking reaction was monitored by measurement of complex dielectric constant ε′ − iε″. Dielectric constant ε′ increased with increasing BaTiO3 content, and agreed approximately with the theoretical ε′ calculated with the Maxwell–Wagner theory. Piezoelectric constant d33 of the poled elastomers was measured by application of compressions in the direction of the poling field. It was found that d33 was of the order of 10−11 C/N and increased steeply with increasing content of BaTiO3 but became almost independent of composition in the range of BaTiO3 content from 3 to 14 vol %. To examine the effect of electric field on the aggregation structure of the particles, we observed light scattering of the suspension under an electric field, and found that the scattering pattern became anisotropic. This indicated that the particles are connected like a pearl necklace and are stretched in the direction of the poling field. The dependence of d33 on the volume fraction of BaTiO3 was explained by a model proposed by Banno. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3065–3070, 1999  相似文献   

13.
Matrix isolation of ferroelectric BaTiO3 nanoparticles was executed by formation of protective silica shell (via hydrolysis and polycondensation of tetraethyl orthosilicate) on particles of precursor—barium titanyl oxalate. Synthesized BaTiO3–SiO2 composites have been characterized by IR spectroscopy, XRD, TEM, DTA/DTG methods.  相似文献   

14.
Hetero‐bimetallic Fe(II) alkoxide/aryloxides were evaluated as initiators for the ring‐opening polymerization of rac‐lactide. [(THF)NaFe(OtBu)3]2 ( 1 ) and [(THF)4Na2Fe(2,6‐diisopropylphenolate)4] ( 2 ) (THF = tetrahydrofuran) both polymerized lactide efficiently at room temperature, with complex 1 affording better control over the molecular weight parameters of the resultant polymer. At conversions below 70%, a linear increase in molecular weight with conversion was observed, indicative of a well‐controlled polymerization process. Complex 2 is the first example of a dianionic Fe(II) alkoxide and has been structurally characterized to reveal a distorted square planar FeO4 array in which both Na counterions bridge two aryloxide ligands and are further complexed by two THF ligands. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3798–3803, 2003  相似文献   

15.
Randomly oriented ferroelectric BaTiO3 and (Ba0.6Sr0.4) TiO3 thin films on platinum coated Si (100) were prepared by a sol-gel method. The precursor solutions were derived from barium hydroxide or a mixture of barium/strontium hydroxides dissolved in acetic acid and titanium butoxide. Polarization versus applied voltage hysteresis studies indicated a remanent polarization of 3 µC/cm2 and a coercive field of 43.4 kV/cm for BaTiO3 films annealed at 800°C for 1 h. Corresponding parameters for (Ba0.6Sr0.4)TiO3 films annealed at 800°C were found to be 7.2 µC/cm2 and 102.7 kV/cm, respectively. Microstructural study of the surface morphology of these films indicated grains of less than 0.1 µm in size. The leakage current for (Ba0.6Sr0.4)TiO3 films was found to be two orders of magnitude lower than that for BaTiO3 films.  相似文献   

16.
Single-stage polymerization recently proposed for producing micron-sized polymer particles in aqueous media by Gu, Inukai and Konno (2002) was carried out under the control of agitation with styrene monomer, an amphoteric initiator, 2,2′-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate and a pH buffer NH3/NH4Cl at a monomer concentration of 1.1 kmol/m3 H2O, an initiator concentration of 10 mol/m3 H2O and a buffer concentration of [NH3] = [NH4Cl] = 10 mol/m3 H2O. In the polymerizations, impeller speed was ranged from 300 to 500 rpm to satisfy complete dispersion of the monomer phase and not to introduce the gas phase from the free surface. Polymerization experiments under steady agitation indicated that impeller speed was an important factor for size distribution of polymer particles. An increase in impeller speed promoted particle coagulation during the polymerization to enlarge the average size of polymer particles but widen the size distribution. To produce polymer particles with narrow size distribution, stepwise reduction in impeller speed was examined in the polymerization experiments. It was demonstrated that this method was more effective than the steady agitation. The impeller speed reduction could produce highly monodisperse particles with an average size of 2 μm and a coefficient of variation of size distributions of 2.2% that was much smaller than typical monodispersity criterion of 10%.  相似文献   

17.
As organic/inorganic composites having attracted much attention due to their heterogeneous physical properties, conducting polyaniline (PANI) and barium titanate (BaTiO3) which possesses large electronic resistance and excellent dielectric strength, were utilized to synthesize PANI/BaTiO3 hybrid which is applicable for an electrorheological (ER) material via ‘in-situ’ oxidative polymerization. Physical properties of the obtained PANI/BaTiO3 composites were characterized via Fourier-transform infrared spectra (FT-IR), thermogravimetry analysis (TGA), and scanning electron microscopy (SEM). The ER behaviors were investigated via a rotational rheometer, and their shear stresses were fitted using our previously proposed rheological equation of state.  相似文献   

18.
The size, distribution, and number of PTFE particles formed by radiation-induced emulsifier-free polymerization were measured by electron microscope and automatic particle analyzer (centrifugation method). From the electron micrographs we found that the particles are formed within 5 min. The change in the number of polymer particles (np) with reaction time (t) depends on the relative concentration of growing polymer chains to stabilizing species produced by the radiolysis of water and monomer; that is, it was governed by TFE pressure/dose rate ratio and classified into three cases: case I, dnp/dt = 0 (e.g., at 3 × 104 rad/hr and 20 kg/cm2); case II, dnp/dt < 0 (e.g., at dose rate below 1.9 × 104 rad/hr and 20 kg/cm2); case III, dnp/dt > 0 (e.g., at 3 × 104 rad/hr and 2 kg/cm2). The polymer molecular weight above 106 is almost independent of the particle size. The polymerization loci are mainly on the surface of polymer particles dispersed in the aqueous phase in cases I and II except in the initial stage. In case III new particles are formed successively during polymerization. Therefore the polymerization loci are mainly in the aqueous phase. Especially in case I, we concluded that after the generation of particles the propagation proceeds mainly on the surface of polymer particles like the core shell model proposed by Granico and Williams.  相似文献   

19.
Summary: We previously discovered that structurally well-defined polymer/inorganic composite particles, i.e., poly(methyl methacrylate) (PMMA)/CaCO3/SiO2 three-component composite particles, can be achieved via reverse atom transfer radical polymerization (ATRP), using 2,2′-azo-bis-isobutyronitrile as initiator and CuII bromide as catalyst. In the present study, the influence of the mass ratio of CaCO3/SiO2 two-component composite particles to methyl methacrylate (MMA) on the rate and behavior of the polymerization was studied in detail. The results illustrate that increasing the mass ratio of CaCO3/SiO2 two-component composite particles will decrease the overall rate of polymerization of MMA under standard reverse ATRP conditions. Thermal properties of the obtained well-defined particles were characterized and determined by thermogravimetric analysis (TGA). The results indicate that well-defined PMMA chains grafted on the surface of CaCO3/SiO2 particles were only degraded by random chain scission of C C linkages within the PMMA chain, which is different from the degradation of PMMA chains prepared via traditional radical polymerization. This difference is reasonably ascribed to the difference between the end groups of PMMA prepared via reverse ATRP and that via traditional radical polymerization, which has been confirmed by end group analysis measured by 1H–NMR spectroscopy.  相似文献   

20.
In order to obtain pure and fine BaTiO3 powders with controlled morphology, sol-precipitation methods involving the use of titanium iso-propoxide and of two different barium sources, i.e. barium nitrate and barium acetate, were proposed in this work. The thermal behaviour of the synthesized gels and the X-ray diffraction data obtained for the oxide powders pointed out that, by using Ba(NO3)2 as barium source, the decomposition process was completed at lower temperature (750°C) and was accompanied by a more pronounced tendency to obtain a single phase BaTiO3 composition, by comparison with the synthesis where barium acetate was used as raw material (1100°C). Scanning electron microscopy investigations emphasized the effect of the nature of barium source and synthesis conditions on the morphology of the oxide powders, as well as on the microstructure of the related ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号