首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
纳米Fe2O3/高氯酸铵复合粒子的制备及其热分解性能研究   总被引:8,自引:1,他引:7  
马振叶  李凤生  陈爱四  白华萍 《化学学报》2004,62(13):1252-1255,J004
用溶剂-非溶剂法制备了纳米Fe2O3/高氯酸铵(AP)复合粒子,并用TEM,SEM,XRD和ICP对其进行了表征.为了研究纳米复合粒子中纳米Fe2O3对AP热分解的催化性能,将相同比例的微米Fe2O3和纳米Fe2O3与AP分别简单混合后作对比,并用DTA对三种样品进行了热分析.结果表明,三种样品中的Fe2O3粒子都能催化AP的热分解;但纳米Fe2O3粒子的催化性能优于微米Fe2O3粒子,纳米Fe2O3/AP复合粒子中纳米Fe2O3对AP的催化性能优于纳米Fe2O3与AP简单混合物.与纳米Fe2O3与AP简单混合的样品相比,纳米复合粒子中的AP高温分解峰温降低20.1℃,低温分解峰几乎消失,表观分解热由850.2J/g提高到1080.8J/g.证明纳米Fe2O3与AP的复合处理能显著提高纳米Fe2O3对AP热分解的催化性能.并用不同样品中AP热分解的动力学参数对所得结果进行了理论分析.  相似文献   

2.
为提高TiO_2纳米管阵列(TiO_2-NTs)的可见光活性,通过阳极氧化和热分解法制备了Fe_2O_3纳米粒子修饰的TiO_2纳米管阵列(Fe_2O_3/TiO_2-NTs)。通过扫描电子显微镜(SEM),透射电子显微镜(TEM)和紫外-可见光漫反射光谱(UV-vis DRS)等对产物进行了相关表征,同时测试了产物的光电性能及其光催化降解甲基橙的性能。结果显示,Fe_2O_3/TiO_2-NTs的光电流强度和光催化降解率分别是是TiO_2-NTs的19倍和8.7倍。  相似文献   

3.
本文分别通过牺牲模板法与热聚合法,制备出Fe_3O_4纳米球与g-C_3N_4。再采用超声辅助液相剥离法将g-C_3N_4剥离成纳米片分散液,接着通过交替过滤使得Fe_3O_4纳米球与g-C_3N_4纳米片形成球片型的光催化复合材料。利用XRD、BET、SEM及TEM等检测手段对产物的形貌及结构进行表征。通过对比单独的g-C_3N_4与Fe_3O_4/g-C_3N_4复合物,得出Fe_3O_4/g-C_3N_4复合物在还原Cr(Ⅵ)水溶液中显示出高的光催化活性,同时也具有良好的稳定性。  相似文献   

4.
探究Fe_3O_4@(DS-LDH)的最佳合成方法及合成条件。对比共沉淀法、离子交换法、焙烧还原法制备的Fe_3O_4@(DS-LDH)。通过DLS、Zeta电位、XRD、FT-IR、SEM、VSM等手段对样品表征分析,利用高效液相法测定载药量。采用L_(16)(4~5)正交试验优化共沉淀法合成工艺,并研究Fe_3O_4@(DS-LDH)的体外缓释性能。结果表明,Fe_3O_4@(DS-LDH)的最优合成条件:n(Mg~(2+))/n(Al~(3+))=2,n(Mg~(2+))/n(总Fe)=2,pH=10.5,晶化温度为90℃。最优条件下载药量达27.59%,Fe_3O_4粒径为168.25nm,Fe_3O_4@(DS-LDH)粒径为128.58nm。Fe_3O_4和Fe_3O_4@(DS-LDH)具有较好磁性性能。外加磁场条件下,体外缓释性能良好,12h趋于稳定,达84.65%。表明Fe_3O_4@(DS-LDH)是良好的磁靶向药物传送控制系统。  相似文献   

5.
分别采用水热、水热-包覆、球磨法制备了Fe_3O_4、聚酰亚胺(PI)改性的Fe_3O_4@PI和Fe_3O_4-PI催化剂用于费托合成反应,对比研究了PI改性及其含量变化对Fe基催化剂催化CO加氢产物分布的影响规律。结合XRD、SEM、TEM、H_2-TPR、COTPD、FT-IR、XPS、TG和接触角实验等手段对催化剂样品进行了表征。结果表明,Fe_3O_4、Fe_3O_4@PI和Fe_3O_4-PI样品均为球形颗粒; PI改性促进了Fe_3O_4的还原,亲水性增强。Fe_3O_4@PI样品中,PI均匀包覆于Fe_3O_4表面,具有较好的热稳定性;与Fe_3O_4、Fe_3O_4-PI相比,Fe_3O_4@PI样品CO吸附增强。在CO加氢反应中,与Fe_3O_4相比,PI改性的Fe_3O_4@PI和Fe_3O_4-PI样品催化活性下降,二次加氢能力受到抑制,烯烃选择性提高; Fe_3O_4@PI样品烯烃选择性增加明显,烯烷比(O/P)由改性前的0.50提高至2.15;适宜含量的PI改性促进C5+烃生成。  相似文献   

6.
《离子交换与吸附》2021,37(2):164-174
以氧化石墨烯(GO)和聚乙烯亚胺(PEI)为反应物,采用共混法制备PEI/GO,然后将Fe_3O_4纳米颗粒分散沉积到PEI/GO表面,得到了复合材料Fe_3O_4/PEI/GO。利用傅里叶红外光谱(FT-IR)、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法对该材料进行表征,并研究了其对Cu~(2+)的吸附性能。结果表明,PEI与GO的羧基反应生成了酰胺键,Fe_3O_4成功沉积在GO表面,GO层状结构的规整性被破坏。Freundlich等温吸附模型和准二级动力学模型能更好地拟合Cu~(2+)在Fe_3O_4/PEI/GO表面的吸附过程,说明该吸附主要受化学作用控制,可能是Fe_3O_4/PEI/GO表面的胺基、羧基、羟基等活性基团与Cu~(2+)发生了离子交换或络合反应所致。  相似文献   

7.
为提高TiO_2纳米管阵列(TiO_2-NTs)的可见光活性,通过阳极氧化和热分解法制备了Fe_2O_3纳米粒子修饰的TiO_2纳米管阵列(Fe_2O_3/TiO_2-NTs)。通过扫描电子显微镜(SEM),透射电子显微镜(TEM)和紫外-可见光漫反射光谱(UV-vis DRS)等对产物进行了相关表征,同时测试了产物的光电性能及其光催化降解甲基橙的性能。结果显示,Fe_2O_3/TiO_2-NTs的光电流强度和光催化降解率分别是是TiO_2-NTs的19倍和8.7倍。  相似文献   

8.
影响Fe3O4超微粒子性能因素的研究   总被引:10,自引:1,他引:10  
超微Fe_3O_4粒子正在广泛地应用到磁流体和催化等领域。化学共沉淀法制备Fe_3O_4是将碱液滴入一定温度的Fe~(2+)、Fe~(3+)混合液中。反应式为Fe~(2+)+2Fe~(3+)+8OH~-=Fe_3O_4+4H_2O。本文研究了Fe_3O_4超微粒子的磁性、粒度与工艺条件的关系。 1 实验 配制一定浓度的FeCl_2和FeCl_3溶液,按一定比例混合并置于三颈瓶中恒温。搅拌后,缓  相似文献   

9.
通过共沉淀法优化制备了Fe_3O_4为内核的磁性核壳式Ce掺杂ZnO催化剂(Fe_3O_4@ZnO-Ce),考察催化剂的稳定性和适用性,利用SEM、BET、ICP-AES、XRD、UV-Vis DRS、VSM、FT-IR等手段对催化剂进行表征,研究温度、pH、催化剂投加量对罗丹明B降解率的影响。结果表明,Ce掺杂ZnO包覆在Fe_3O_4表面形成球状纳米颗粒,平均粒径约100 nm,Fe_3O_4和3%Ce掺杂ZnO最佳物质的量之比为1:20,400℃煅烧2 h。日光模拟灯为光源,在pH为7、水温30℃、催化剂投加量0.2 g/100 mL、90 min罗丹明B降解率达到92%,6次循环套用降解率达到53%以上。  相似文献   

10.
采用化学液相沉淀法制备Y2O3纳米粒子/碳纳米管复合体(Y2O3/CNTC),利用扫描电镜(SEM)和X 射线光电子能谱(XPS)对其结构和成分进行了表征. 结果表明, Y2O3纳米粒子能负载在碳纳米管上,且负载效果较好. 采用差热分析研究了Y2O3/CNTC 对高氯酸铵热分解的催化性能, 结果表明, Y2O3 /CNTC 可显著降低高氯酸铵(AP)的高温分解峰温,表现出对AP 高温分解良好的催化性能. 相同量的Y2O3/CNTC 和纯Y2O3纳米粒子进行对比, Y2O3 /CNTC表现出更强的催化性能.当Y2O3/CNTC的质量分数为4%时,使AP的高温分解峰温提前131.14C[deg].  相似文献   

11.
Energy components used in solid rocket propellants are beneficial for improving the energy performance, and their thermal decomposition characteristics significantly affect the combustion properties of the propellants. As a kind of energetic material with both high energy and low sensitivity (impact and friction), 5, 5'-bistetrazole-1, 1'-diolate (TKX-50) can effectively improve the energy and safety characteristics of solid propellants. Burning catalyst is another important component of solid propellants, which can significantly improve the burning rate of the propellant and reduce the pressure exponent. Among various burning catalysts, nanoscale transition metal oxides can promote the thermal decomposition of the energetic component, thus enhancing the combustion properties of the solid propellant. However, the catalytic effects of nanoscale transition metal oxides with different morphologies on the thermal decomposition of TKX-50 have rarely been studied. Based on the excellent catalytic activity of Fe2O3 for TKX-50 thermal decomposition, nano-Fe2O3 particles with spherical and tubular microstructures were used for TKX-50 thermal decomposition. The Fe2O3 nanoparticles were successfully fabricated via the solvothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. The XRD, FT-IR, and XPS results confirmed the successful fabrication of spherical and tubular Fe2O3 samples. The SEM and TEM images showed that the spherical Fe2O3 samples are composed of agglomerated Fe2O3 nanoparticles with an average particle size of 110 nm. In addition, the average diameter and length of hollow tubular Fe2O3 nanoparticles are 120 nm and 200 nm, respectively. The catalytic activities of spherical and tubular Fe2O3 for TKX-50 decomposition were studied by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) methods. The DSC and TG-DTG curves showed that both tubular and spherical Fe2O3 could effectively promote TKX-50 thermal decomposition. The first thermal decomposition peak temperature (TFDP) of TKX-50 was reduced by 36.5 K and 26.3 K in the presence of tubular and spherical Fe2O3, respectively, at 10 K·min1. The activation energy (Ea) of TKX-50, determined by the iso-conversional method, was significantly reduced in the presence of both tubular and spherical Fe2O3. The results indicated that the microstructure of the catalyst has a significant effect on its catalytic performance for TKX-50 thermal decomposition, and that tubular Fe2O3 with hollow microstructure possesses better catalytic activity than spherical Fe2O3. The excellent catalytic activity of tubular Fe2O3 can be attributed to the hollow microstructure, which has more active sites for TKX-50 thermal decomposition.  相似文献   

12.
Magnetic Fe3O4@SiO2 nanoparticles with superparamagnetic properties were prepared via a reverse mi-croemulsion method at room temperature. The as-prepared samples were characterized by transmission electron mi-croscopy(TEM), X-ray diffractometry(XRD), and vibrating sample magnetometry(VSM). The Fe3O4@SiO2 nanoparticles were modified by (3-aminopropyl)triethoxysilane(APTES) and subsequently activated by glutaraldehyde(Glu). Protein A was successfully immobilized covalently onto the Glu activated Fe3O4@SiO2 nanoparticles. The adsorption capacity of the nanoparticles was determined on an ultraviolet spectrophotometer(UV) and approximately up to 203 mg/g of protein A could be uniformly immobilized onto the modified Fe3O4@SiO2 magnetic beads. The core-shell of the Fe3O4@SiO2 magnetic beads decorated with protein A showed a good binding capacity for the chime-ric anti-EGFR monoclonal antibody(anti-EGFR mAb). The purity of the anti-EGFR mAb was analyzed by virtue of HPLC. The protein A immobilized affinity beads provided a purity of about 95.4%.  相似文献   

13.
Magnetic nanoparticles show great potential in RNA enrichment and separation for rapid detection of viral infection.Fundamental studies on the interaction between RNA and nanoparticles with uniform size and surface property are necessary for designing better adsorbent and optimizing the conditions.In this study,monodispersed superparamagnetic magnetite(Fe3O4) nanoparticles were synthesized by thermal decomposition and modified with tetramethylammonium hydroxide[N(CH3)4OH,TMAOH] that become highly dispersible and stable in water.High-efficiency plant viral RNA adsorption onto TMAOH/Fe3O4 nanoparticles in the extracted solution of plant leaves was demonstrated.The changes of surface charge of TMAOH on the Fe3O4 nanoparticles with pH contribute to the RNA adsorption and elution.Separating viral RNA with magnetic nanoparticles could be a simple,quick andhighly efficient method.  相似文献   

14.
The development of high specific capacitance electrode materials with high efficiency, scalability and economic feasibility is significant for the application of supercapacitors, however, the synthesis of electrode material still faces huge challenges. Herein, graphene(G)/Fe2O3 nanocomposite was prepared via a simple hydrothermal method connected with subsequent thermal reduction process. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) results showed rod-like Fe2O3 nanoparticles were prepared and well-dispersed on graphene layers, providing a rich active site and effectively buffering the aggregation of Fe2O3 nanoparticles in the process of electrochemical reaction. The specific capacitance of the obtained G/Fe2O3 nanocomposite as negative electrode for supercapacitor was 378.7 F/g at the current density of 1.5 A/g, and the specific capacitance retention was 88.76% after 3000 cycles. Furthermore, the asymmetric supercapacitor(ASC) was fabricated with G/Fe2O3 nanocomposite as negative electrode, graphene as positive electrode, which achieved a high energy density of 64.09 W∙h/kg at a power density of 800.01 W/kg, maintained 30.07 W∙h/kg at a power density of 8004.89 W/kg, and retained its initial capacitance by 78.04% after 3000 cycles. The excellent result offered a promising way for the G/Fe2O3 nanocomposite to be applied in high energy density storage systems.  相似文献   

15.
以L-半胱氨酸为表面改性剂与粒径调节剂,采用水热法制备具有良好分散稳定性的磁性Fe3O4纳米粒子。通过透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)、比磁饱和强度测定仪(VSM)等对产物进行表征,研究L-半胱氨酸对磁性Fe3O4纳米粒子的形貌、粒径分布、晶型结构、分散稳定性等的影响,理论推导了L-半胱氨酸改性后的Fe3O4纳米粒子(L-Fe3O4纳米粒子)的生成机制,将该材料作为载体吸附金种后探讨其在催化对硝基苯酚方面的应用。结果表明:沉降22 h时,调节pH值为7.0制备的Fe3O4纳米粒子的沉降高度大约是L-Fe3O4纳米粒子的6.5倍;吸附金种后的L-Fe3O4纳米粒子催化效率大约是未改性Fe3O4纳米粒子的5倍。L-半胱氨酸有效的改善了Fe3O4纳米粒子与分散介质之间的相容性,保护并改善了纳米粒子的分散稳定性,在污水处理等方面有潜在的应用。  相似文献   

16.
首先采用热分解法制备了Fe3O4纳米材料, 再将其作为磁性核, 分别采用种子沉积法和种子介导生长法制备了Fe3O4-Au核-卫星纳米复合材料和Fe3O4@Au核-壳纳米复合材料, 并对其形貌和性能进行了表征分析. 结果表明, 所制备的Fe3O4-Au核-卫星和Fe3O4@Au核-壳纳米复合材料粒径均匀, Au纳米颗粒均匀沉积/包覆在Fe3O4纳米材料表面, 且样品均具有良好的磁响应性. 使用4-氨基苯硫酚(4-ATP)作为拉曼探针分子, 对比了这两种纳米复合材料作为SERS基底时的拉曼信号增强效果. 结果显示, Fe3O4@Au核-壳纳米复合材料是更优秀的SERS基底, 且该SERS基底具有良好的信号再现性. 最后, 使用Fe3O4@Au核-壳纳米复合材料作为SERS基底, 成功地在苹果皮上检测出残留福美双的SERS信号.  相似文献   

17.
制备对醇氧化反应具有优异电活性的钯催化剂是醇燃料电池研究的重要内容。本文用硼氢化钠还原法制备了钯纳米颗粒, 然后沉积在Fe3O4/C复合物表面, 得到了不同Fe3O4负载量的Pd/Fe3O4-C催化剂. 透射电镜(TEM)图显示钯纳米颗粒均匀地分散在Fe3O4/C表面. 对制备好的Pd/Fe3O4-C催化剂进行了循环伏安法(CV)、计时电流(CA)和电化学阻抗谱(EIS)的测试, 研究了其在碱性介质中对C1-C3醇类(甲醇、乙醇和丙醇)氧化的电催化活性. 结果表明, 所制备的不同Fe3O4负载量的Pd/Fe3O4(2%)-C,Pd/Fe3O4(5%)-C, Pd/Fe3O4(10%)-C和Pd/C催化剂中, Pd/Fe3O4(5%)-C催化剂表现出最高的醇氧化电流密度. 依据循环伏安(CV)数据,Pd/Fe3O4(5%)-C催化剂对甲醇、乙醇、正丙醇和异丙醇氧化的阳极峰电流密度分别是Pd/C催化剂的1.7、1.4、1.7和1.3倍. Pd/Fe3O4(5%)-C催化剂对乙醇氧化的电荷传递电阻也远低于Pd/C催化剂. 制备的所有催化剂对C1-C3醇类电氧化的电流密度大小排序如下: 正丙醇﹥乙醇﹥甲醇﹥异丙醇. 此外, 碳粉中Fe3O4纳米颗粒的存在提高了钯纳米颗粒的电化学稳定性.  相似文献   

18.
肺纤维化是一种致命性肺部疾病, 目前临床常规的甲强龙(MPS)联合环磷酰胺(CTX)治疗方法存在明显的不良反应. 基于降低药物毒副作用的目的, 本文设计了一种聚多巴胺(PDA)包覆的Fe3O4纳米粒子/甲强龙/环磷酰胺复合超粒子(Fe3O4/MPS/CTX@PDA SPs), 提出磁性靶向治疗肺纤维化的思路. 从预制的油溶性Fe3O4纳米粒子出发, 通过水包油微乳液模板法制备了Fe3O4 超粒子(SPs), 并在进一步包覆PDA壳层的过程中引入MPS和CTX, 制备了Fe3O4/MPS/CTX@PDA SPs, 考察了Fe3O4/MPS/CTX@PDA SPs的稳定性、 磁性、 对MPS和CTX的负载及释放, 分析了其生物毒性, 并建立动物模型验证了其磁性靶向功能.  相似文献   

19.
High-performance solid propellants are very important for the development of modern weapons. Aside from their high energy and high burning rate, safety performance is regarded as the most important factor that should be considered whenever a new solid propellant recipe is formulated. Therefore, exploring a new type of combustion catalyst that can improve both catalytic activity and reduce the sensitivity of the energetic component is significant. Traditionally, transition metals or metal oxides are used as a combustion catalyst for accelerating the thermal decomposition of energetic components. However, the existing problem of these catalysts is the aggregation of particles accompanied by poor surface area. Coupling metal oxides with graphene is a promising approach to obtain a binary composite with stable structure and large specific surface area. In this work, rod-like and granular Fe2O3 nanoparticles were synthesized using a hydrothermal method. Then, the two as-prepared Fe2O3 nanoparticles were coupled with graphene sheets using an interfacial self-assembly method, which can effectively prevent the aggregation of Fe2O3 particles and simultaneously increase the active sites that participate in the reaction. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the phase states and chemical compositions of the prepared samples. The morphology and internal structures were further demonstrated through scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption tests. Both phase analysis and structure identification indicate that the prepared Fe2O3/G has high purity and high surface area. The catalytic performance of the prepared Fe2O3 and Fe2O3/G in the thermal decomposition of hexanitrohexaazaisowurtzitane (CL-20) was evaluated based on thermal gravimetric analysis-infrared spectroscopy (TGA-IR) and differential scanning calorimetry (DSC) tests. The non-isothermal decomposition kinetics of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were further studied by DSC. The results reveal the excellent catalytic activity of Fe2O3/G in the thermal decomposition of CL-20, which is attributed to the presence of abundant pore structure and large surface area. The reaction mechanisms of the exothermic decomposition process of CL-20, Fe2O3/CL-20, and Fe2O3/G/CL-20 were obtained by the logical choice method, and the composites all followed same mechanism function model as CL-20. Through comparison, the rod-like Fe2O3 coupled with graphene was found to have the best catalytic activity in the thermal decomposition of CL-20. Thus, the rod-like Fe2O3 and its Fe2O3/G composite were used to investigate their influence on the impact sensitivity of CL-20 by fall hammer apparatus. The results show that rFe2O3/G can effectively decrease the impact sensitivity of CL-20 compared with pure CL-20 and rFe2O3/CL-20. Therefore, rFe2O3 coupled with graphene not only promotes the thermal decomposition but also improves the safety performance of CL-20.  相似文献   

20.
A simple and efficient colorimetric biosensing for hydrogen peroxide and glucose with peroxidase-like vitamin C(Vc) functionalized Fe3O4 magnetic nanoparticles(Vc/Fe3O4MNPs) as a catalyst is reported. Compared with Fe3O4 MNPs and other catalysts, Vc/Fe3O4 MNPs exhibited superior catalytic properties. Kinetic studies indicated that vitamin C incorporated on Fe3O4 MNPs improved the affinity toward H2O2. As low as 0.29 μmol/L H2O2 can be detected with a wide linear range of 0.5—100 μmol/L H2O2; moreover, as low as 0.288 μmol/L glucose can be detected with a linear range of 0.5—25 μmol/L glucose. The detection method was highly sensitive in sensing H2O2 and glucose. The robustness of Vc/Fe3O4 MNPs rendered them suitable for wide ranging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号