首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the rapid expansion of supercritical solution (RESS) process was used to precipitate fine solid particles of amoxiccilin where supercritical carbon dioxide was used as a solvent. The process has been done by changing the RESS parameters, including extraction pressure (150–210 bar), extraction temperature (313–333 K), nozzle length (2–15 mm), effective nozzle diameter (450–1700 µm), and spraying distance (1–10 cm), to investigate the effect of these parameters on the size and morphology of the precipitated amoxicillin particles. The characterization (size and morphology) of the particles was examined using scanning electron microscopy (SEM). Based on the different experimental conditions, the mean particle size of the fabricated particles were between 1.08 and 5.72 µm, while the intact particles of amoxicillin were about 41.46 µm. Also, no regular changes in the morphology of the processed particles were observed.  相似文献   

2.
In this study, the rapid expansion of supercritical solutions process was used to micronize the intact particles of piroxicam. Experiments were carried out to investigate the effect of extraction pressure (160–220 bar), extraction temperature (308–333 K), spraying distance (1–10 cm), and nozzle configuration (length and effective diameter) on the size and morphology of the precipitated piroxicam particle. The characterization of the particles was determined by scanning electron microscopy (SEM). The particle size of the original piroxicam particles was (39.2 µm) while depending upon the different experimental conditions, smaller particles of piroxicam (1.52–8.78 µm) were obtained.  相似文献   

3.
Micronization of fenofibrate using top-down process via jet mill and bottom-up process via rapid expansion of supercritical solution (RESS) was conducted to investigate their effects on the formation of micronized fenofibrate. Processed fenofibrate retained its crystalline structure and have similar chemical structure with unprocessed fenofibrate. The average particle size of fenofibrate was reduced from its original wherein from 68.779±0.146 μm to 3.050±0.085 μm using jet mill process at SFR 2.7 kg/h; and to 3.044±0.056 μm using RESS under the optimum condition. The results revealed that jet mill and RESS processes were applicable for micronization of fenofibrate.  相似文献   

4.
Iron oxide particles were micronized by supercritical carbon dioxide (CO2) as an antisolvent in a batch gas antisolvent (GAS) process. In the present study, the feasibility of GAS process to micronize the iron oxide particles using dimethyl sulfoxide (DMSO) as a solvent was investigated. In this direction, particle size and morphology changes were investigated with changing solution pressure (80–150 bar), temperature (308.15–328.15 K), and concentration (1.5–6 g/l). Based on the different experimental conditions, the particle size of the original iron oxide was decreased in the range of 17.25 to 4.23 µm, which shows a the success of the GAS process to reduce the particle size of the intact iron oxide particles. Simultaneously, morphology changes were observed starting from the irregular morphology for synthesized particles to more regular shapes that included fused and spherical-fused particles.  相似文献   

5.
Aim of this work was to investigate the solid-state characteristics of micronized acetylsalicylic acid (ASA), produced by rapid expansion of a supercritical carbon dioxide solution (RESS) and to assess whether a correlation could be found between process parameters and solid-state characteristics. Drug solubility in supercritical CO2 was first assessed under various pressure and temperature conditions. DSC, FT-IR, PXRD, SEM, laser light scattering and HPLC were used to characterise the solid phases produced by the RESS. The obtained particles were crystalline, with spectroscopical and diffractometrical pattern overlapping those of the starting available product. However, a strong reduction of particle size was obtained, linearly correlated to pressure imposed during the RESS process, while temperature did not seem to have a major effect. Similar influence of pressure was observed on the final melting temperature of the micronized ASA. The application of a mathematical model allowed to conclude that the melting temperature depression of RESS-prepared ASA powders can be attributed to the decrease of particle dimension rather than to the formation of different solid phases or impurities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The effects of storage on the crystallization, dissolution and absorption of tolbutamide from amorphous tolbutamide-2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) complex were investigated, in comparison with those of polyvinylpyrrolidone (PVP) solid dispersion. The amorphous solid complex of tolbutamide with HP-beta-CyD and the solid dispersion of tolbutamide with PVP were prepared by a spray-drying method. During storage, a stable form of tolbutamide (form I) was crystallized from the amorphous PVP dispersion, whereas a metastable form of tolbutamide (form II) was crystallized from the HP-beta-CyD complex. The dissolution rate of tolbutamide from both HP-beta-CyD complex and PVP dispersion was significantly faster than that of tolbutamide alone. However, the dissolution rate from the PVP dispersion markedly decreased with storage, because of the formation of slow dissolving form I crystals. On the other hand, the dissolution rate from the HP-beta-CyD complex was only slightly decreased due to the formation of fast dissolving formII crystals. These in vitro dissolution characteristics were clearly reflected in the in vivo absorption of tolbutamide and the glucose plasma level after oral administration in dogs. The results suggested that HP-beta-CyD is useful not only for converting crystalline tolbutamide to an amorphous substance, but also for maintaining the fast dissolution rate of the drug over a long period. Furthermore, the crystallization of drugs from CyD complexes, with storage, seemed to be different from that involving polymer excipients such as PVP.  相似文献   

7.
The purpose of this study was to form micronized powders of Oxcarbazepine (OXC), a poorly water-soluble drug, using a static mixer technique to enhance the dissolution rate. Controlled precipitation was achieved injecting the organic OXC solution rapidly into an aqueous methylcellulose (MC) protective solution by means of a static mixer thus providing turbulent and homogeneous mixing. Furthermore, a factorial design was implemented for data analysis. The physicochemical properties of the freeze-dried dispersions were evaluated by differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drug microcrystals showed a narrow size distribution with approximately 2 μm mean particle size and high drug loading. DSC and FTIR studies revealed that the drug remained in crystalline state and no drug–polymer interaction occurred. The dissolution studies showed enhanced dissolution of OXC microcrystals compared to the pure drug. The static mixer technique was proved capable for micro-sized polymeric particles. This is an inexpensive, less time consuming and fully scalable process for development of poorly soluble drugs.  相似文献   

8.
Rapid expansion of supercritical solutions (RESS) technique was applied for the preparation of phenylbutazone fine particles. The operating temperature and pressure affected the yield of the drug fine particles, which was evaluated by dissolving the sprayed product of drug into ethanol. Effect of pre- and post-expansion conditions on the particle size distribution of phenylbutazone was investigated and the smallest sample (mean particle size: 1.59 microm) was obtained when the RESS method was operated at a pressure of 26 MPa combined with a temperature of 32 degrees C. Physicochemical properties of the fine particles were investigated by powder X-ray diffraction and differential scanning calorimetry. It was found that the phenylbutazone fine particles obtained were meta-stable beta form under the experimental conditions tested, suggesting polymorphic transformation during the RESS process.  相似文献   

9.
The swelling and dissolution phenomena of microcrystalline cellulose (MCC) were investigated in subcritical and supercritical water. Commercial MCC was treated in water at temperatures of 250–380 °C and a pressure of 250 bar for 0.25–0.75 s. As reaction products, undissolved but depolymerised cellulose residue, short-chain cellulose precipitate, water-soluble cello-oligosaccharides and monosaccharides, as well as their degradation products, were detected. The highest yield of the cellulose II precipitate was obtained after a reaction time of 0.25 s at 360 °C. Our hypothesis was that if the crystallites were swollen, the depolymerization pattern would be that of homogeneous reaction and the cellulose Iβ to cellulose II transformation would be observed. The changes in the structure of the undissolved cellulose residue were characterised by size exclusion chromatography, wide-angle X-ray scattering and 13C solid-state NMR techniques. In many cases, the cellulose residue samples contained cellulose II; however, due to experimental limitations, it remains unclear whether it was formed through the swelling of crystallites or the partial readsorption of the dissolved cellulose fraction. The molar mass distributions of untreated MCC and after low intensity treatments showed a bimodal shape. After high intensity treatments the high molar mass chains disappeared which indicated a complete swelling or dissolution of the crystallites.  相似文献   

10.
The solid phase transition mechanism of α‐ to β‐form crystal upon specific treating with supercritical CO2 + cosolvent on original pure α and mixed (α+β) form syndiotactic polystyrene (sPS) was investigated, using wide angle X‐ray diffraction and differential scanning calorimetry measurements as a function of temperature, pressure, and cosolvent content. As in the supercritical CO2, sPS in supercritical CO2 + cosolvent underwent solid phase transitions from α‐ to β‐form, and higher temperature or higher pressure favored this transformation. Due to the higher dipole moment of acetone, small amounts of acetone used as cosolvent with CO2 made the transition of α‐ to β‐form occur at lower temperature and pressure than in supercritical CO2, and made the α‐form crystal completely transform to β‐form in the original mixed (α+β) form, whereas ethanol did not. The original β‐form crystal in the original mixed (α+β) form sample acted as the nucleus of new β‐form crystal in the presence of cosolvent as it did in supercritical CO2, when compared with the original pure α‐form sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1625–1636, 2007  相似文献   

11.
The effects of two polar co-solvents, chlorodifluoromethane and acetone, on the solubility and enthalpy of a solution of 1,4-naphthoquinone in supercritical (SC) CO2 were studied. We found that the dissolution process becomes less exothermic in the presence of the co-solvents relative to that in pure CO2, although the solubility is enhanced significantly by the co-solvents. This indicates that the increase in the solubility by adding co-solvents results from the increase of the entropy of solution. On the basis of the unexpected results we propose a new mechanism for the solubility enhancement of the solute by the co-solvents in supercritical fluids (SCF); this should be applicable to cases in which the local density of the SC solvent around the solute and the co-solvent is larger, and the co-solvent associates preferentially with the solute. The results are also very important for the understanding of other fundamental questions of SCF science, such as the effect of co-solvents on the thermodynamic and kinetic properties of the reactions in SCFs.  相似文献   

12.
Supercritical CO2 assisted dissolution of metals and metal-oxides and in situ extraction by TBP (or co-solvent) has been reported in literature. However, in this work, the dissolution and in situ extraction by nitric acid solvates of TBP and alternate solvent TiAP has been reported for g-level UO2 (essentially PHWR fuel pellet fragments) feeds at atmospheric pressure without requiring supercritical fluids. Encouraging results were obtained.  相似文献   

13.
The objective of the present investigation was to study the effect of eutectic formation on in vitro dissolution of simvastatin (SIM) released from mixtures with acetylsalicylic acid (ASA) prepared by a grinding method. SIM–ASA mixtures were characterized by means of differential scanning calorimetry (DSC), infrared spectroscopy (IR), X-ray powder diffractometry (XRPD), and in vitro dissolution tests. IR spectroscopy and XRPD studies indicated no interaction between SIM and ASA in the solid state. The DSC investigation has revealed that SIM and ASA form a simple eutectic system containing 66.6 % w/w of SIM at the eutectic point. In vitro dissolution studies of SIM and its mixtures with ASA were carried out. The eutectic mixture shows an appreciable increase in the dissolution rate in comparison with other ratios and SIM in 0.5 % w/v sodium lauryl sulfate. The dissolution enhancement of SIM was related to the effective wetting of the drug particles with a significantly reduced size released from eutectic composition. In conclusion, dissolution of SIM can be enhanced through eutectic formation with ASA by means of simple mechanical activation (a grinding method).  相似文献   

14.
The intact plant parts and genetically modified hairy root clone #TpA6 of Tagetes patula were extracted with supercritical fluid CO2 extraction (SFE) and a conventional solvent extraction. SFE optimization included the variation of fluid CO2 pressure, dynamic time, and the addition of methanol modifier co-solvent. The four characteristic thiophene metabolites, 5-(3-buten-1-ynyl)-2,2′-bithienyl (BBT), 2,2′:5′,2″-terthiophene (α-T), 5-(4-acetoxy-1-butynyl)-2,2′-bithienyl (BBTOAc), and 5-(3,4-diacetoxy-1-butynyl)-2,2′-bithienyl [BBT(OAc)2], were analysed by GC–MS. The proposed SFE method allowed the selective extraction of thiophenes in 60 min dynamic time with supercritical CO2 without modifier co-solvent, at 30 MPa and 40 °C. The SFE and the reference solvent extraction yielded similar results. The SFE of intact roots and flowers yielded 717 ± 31.3 and 480 ± 26.6 μg g?1 α-T, respectively, while the leaves did not contain considerable amounts of thiophenes. Remarkable amounts of BBT, BBTOAc, and BBT(OAc)2 were characteristic of the SFE of hairy root cultures.  相似文献   

15.

The intact plant parts and genetically modified hairy root clone #TpA6 of Tagetes patula were extracted with supercritical fluid CO2 extraction (SFE) and a conventional solvent extraction. SFE optimization included the variation of fluid CO2 pressure, dynamic time, and the addition of methanol modifier co-solvent. The four characteristic thiophene metabolites, 5-(3-buten-1-ynyl)-2,2′-bithienyl (BBT), 2,2′:5′,2″-terthiophene (α-T), 5-(4-acetoxy-1-butynyl)-2,2′-bithienyl (BBTOAc), and 5-(3,4-diacetoxy-1-butynyl)-2,2′-bithienyl [BBT(OAc)2], were analysed by GC–MS. The proposed SFE method allowed the selective extraction of thiophenes in 60 min dynamic time with supercritical CO2 without modifier co-solvent, at 30 MPa and 40 °C. The SFE and the reference solvent extraction yielded similar results. The SFE of intact roots and flowers yielded 717 ± 31.3 and 480 ± 26.6 μg g−1 α-T, respectively, while the leaves did not contain considerable amounts of thiophenes. Remarkable amounts of BBT, BBTOAc, and BBT(OAc)2 were characteristic of the SFE of hairy root cultures.

  相似文献   

16.
Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.  相似文献   

17.
Bis(2-ethylhexyl) sodium sulphosuccinate (AOT) was successfully solubilised in supercritical carbon dioxide (scCO2), with ethanol or pentanol as co-solvent. Three molecular spectroscopic probes: methyl orange (MO), 8-hydroxy-1,3,6-pyrenetrisulphonic acid trisodium salt (HPTS), and riboflavin (RF) were used to examine the solubilisation characteristics of the water/scCO2 microemulsions formed with AOT. MO was extracted at various operating conditions, although the wavelength of its solvatochromic absorption maximum was not indicative of bulk water properties. Instead, the spectral results imply that MO may be located at the surfactant/water interface. The highly water-soluble dye HPTS was unable to be extracted into scCO2/AOT/water systems, suggesting that the water in the reverse micelle core was not as polar under supercritical conditions as those at ambient conditions. Finally, RF was extracted into the supercritical phase (40°C, 175 bar) with pentanol co-solvent, with an apparent enhanced uptake compared with the value at 40°C and ambient pressure in bulk water. This appears to be due to the presence of microcrystals dispersed in the supercritical phase.  相似文献   

18.
The aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.  相似文献   

19.
A novel and efficient ultra-high performance supercritical fluid chromatography method was developed for the quantitative analysis of five retinol isomers in animal livers. The separation of the five retinol isomers was carried out using an Acquity UPC2 HSS C18 SB column (150 mm?×?3.0 mm, 1.8 µm) with acetonitrile as a co-solvent. By optimizing the columns, gradient program, co-solvent, column temperature and backpressure, the five retinol isomers and the internal standard 11-cis-13,14-dihydroretinol were successfully separated within 20 min. Samples were saponified and extracted by solid-supported liquid–liquid extraction using a diatomaceous earth cartridge. Comparing with the traditional liquid–liquid extraction, the extraction enables the reduction of time-consuming and laborious procedures. This method used 11-cis-13,14-dihydroretinol as an internal standard to improve the precision and accuracy of quantitative analysis. The correlation coefficients (r2) of the calibration curves were all above 0.999, the limits of detection for the five retinol isomers were in the range of 0.10–0.20 µg mL??1, and the limits of quantification were in the range of 0.33–0.66 µg mL??1. The mean recoveries were from 92.5 to 102.5%. The interday and intraday relative standard deviations were within 10%. This method was successfully applied to the determination of retinol isomers in ten raw animal livers and animal liver products (chicken, duck, pig, cattle, and sheep).  相似文献   

20.
采用超临界CO2注入技术制备聚合物-无机纳米粒子复合材料,以乙醇作为共溶剂,在超临界CO2中将正硅酸乙酯(TEOS)注入到聚丙烯(PP)中,重点研究共溶剂乙醇对TEOS在PP中注入率的影响.实验结果表明注入率随着共溶剂加入先增加后减小.同时研究了在共溶剂的存在下其他实验条件对注入率的影响.并采用卢瑟福背散射能谱法(RBS)分析了聚丙烯/SiO2纳米复合材料的注入元素深度分布,发现Si元素在PP中的浓度分布不均匀,随着深度的增加而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号