首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanoparticles were synthesized under mild hydrothermal conditions (T = 150 °C, P = autogenous, experimental duration = 18 h). Manganese was added as an additive to ZnO nanoparticles in different molar percentages. In situ surface-modification was successfully carried out for these manganese-added ZnO nanoparticles using n-butylamine as a surface modifier. The modified manganese-added ZnO nanoparticulates are hydrophilic in nature and are well dispersed in various solvents. The modified nanoparticles were characterized using powder XRD, FTIR, SEM, Zeta potential, and UV?CVis spectrophotometry. The characterization results indicated tailoring of the morphology and size of the nanoparticles, and changing the surface chemistry of the nanoparticles synthesized. The SEM results show that the surface modified manganese-added ZnO nanoparticles have a very thin layer of organic coverage around the inorganic nanoparticles, thus, giving rise to hybrid nanoparticles. The photodegradation of Brilliant Blue dye under sunlight showed the higher efficiency of the modified manganese-doped ZnO nanoparticles compared to the reagent-grade ZnO.  相似文献   

2.
A study regarding the electrodeposition of nickel oxide particles on the activated multi-walled carbon nanotubes from 2 M NaOH solution containing Ni(NO3)2 and EDTA was carried out. The electrodeposition process was carried out using an optimized double-pulse sequence of potentials: E 1 = ?0.2 V vs. SCE (t 1 = 0.3 s) and E 2 = 0.7 V vs. SCE (t 2 = 0.03 s). Spectroscopic XPS investigations and SEM analysis were used in order to characterize the surface and morphology of the studied modified electrode. Cyclic voltammetry and chronoamperometry were used in order to evaluate the electrochemical/amperometric performance of the GC/MWCNT-Ni electrode toward the oxidation of some aliphatic alcohols in strong alkaline medium.  相似文献   

3.
Wei Gao  Hong Yu  Shuang Zhou 《Chromatographia》2010,71(5-6):475-479
Determination of four imidazolium ionic liquid cations by ion-pair chromatography was carried out using direct conductivity detection. Chromatographic separations were performed on a silica-based monolithic column with 1-heptanesulfonic acid sodium + acetonitrile + citric acid as eluent. Carbon number rule and influence of acetonitrile on the retention of imidazolium cations were discussed. Detection limits (S/N = 3) for the cations were 2.1–55.9 mg L?1. Relative standard deviations (RSD, n = 5) for peak areas were less than 3.0%. The method has been successfully applied to the determination of two ionic liquids synthesized by organic chemistry lab.  相似文献   

4.
《Analytical letters》2012,45(5):775-789
Abstract

In this work, we report the development of a highly sensitive and stable uric acid sensor based on the synergic action of multiwalled carbon nanotubes (MWNTs) and ZnO nanoparticles. MWNTs were first cast on pyrolytic graphite (PG) wafers. ZnO nanoparticles were then decorated onto the negatively charged MWNTs via the Vapor Liquid Solid (VLS) growth. Uricase was immobilized on the ZnO nanoparticles surface because of their large differences in the isoelectric point (IEP). Last, a cationic polydiallyldimethylammonium chloride (PDDA) layer was coated onto the uricase-contained ZnO nanoparticle layer and resulted in the PDDA/uricase/ZnO/MWNTs multilayer structure. The unique multilayer structure provides a favorable microenvironment to keep the bioactivity of uricase, which led to rapid amperometric response toward uric acid. Amperometric detection of uric acid was carried out at 320 mV (vs. SCE) in 0.05 mol/L (M) phosphate buffer solution (pH 6.8). For the sensor, a wide linear response range of 5.0 µM to 1 mM with a linear sensitivity of 393 mA cm?2M?1, a detection limit of 2.0 µM (3σ), and a long-term stability of 160 days can be obtained by using differential pulse voltammetry (DPV). Testing results in human urine obtained from the sensors were also compared with the data obtained by spectrometry. For five samples with different concentrations of urine, the relative deviations between them were smaller than 3.8%. The recovery was between 96.5 and 104.0%.  相似文献   

5.
In this study, the removal of nitrate using ZnO, MgO, and CeO2 nanoparticles (NPs) modified by humic acid from water was tested. Nanoparticles were modified by humic acid using the microwave-assisted technique and then modified ZnO (Zn–H), modified MgO (Mg–H), and modified CeO2 (Ce–H) were characterized through SEM, EDX, FTIR, and XRD analysis. Several important parameters influencing the removal of nitrate such as contact time, pH, adsorbent dosage and temperature were explored systematically by batch experiments. Isotherm studies were set up with the following optimum conditions: pH?=?5, adsorbent concentration of 1 g L?1, 180 min and 25 °C. The results revealed that the adsorption were best fitted to pseudo-second order and simple Elovich kinetics models. Langmuir, Freundlich and linear adsorption models were fitted to describe adsorption isotherms and constants. The isotherm analysis indicated that the adsorption data can be represented by both Freundlich and linear isotherm models. The maximum adsorption capacity (qm) was obtained at 55.1, 74.2 and 75.8 mg g?1 for Zn–H, Ce–H, and Mg–H, respectively. The thermodynamic parameters such as free energy, enthalpy and entropy of adsorption were obtained. From the thermodynamic parameters, it is suggested that the adsorption of nitrate on modified NPs (MNPs) followed the exothermic and spontaneous processes. The obtained results showed that the MNPs were efficient adsorbents for removing nitrate from aqueous media.  相似文献   

6.
A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb2+ and Cd2+ ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.  相似文献   

7.
The adsorption of the uranyl ions from aqueous solutions on the nanoporous ZnO powders has been investigated under different experimental conditions. The adsorption of uranyl on nanoporous ZnO powders were examined as a function of the contact times, pH of the solution, concentration of uranium(VI) and temperature. The ability of this material to remove U(VI) from aqueous solution was followed by a series of Langmuir and Freunlinch adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders were 98.65 % ± 1.05 and 7,304 mL g?1, respectively. The optimum conditions were found as at pH 5.0, contact time 1 h, at 1/5 Zn2+/urea ratio, 50 ppm U(VI) concentration and 303 K. The monomolecular adsorption capacity of nanoporous ZnO powders for U(VI) was found to be 1,111 mg g?1 at 303 K. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, have been calculated. Thermodynamic parameters (ΔH° = 28.1 kJ mol ?1, ΔS° = 160.30 J mol?1 K?1, ΔG° = ?48.54 kJ mol?1) showed the endothermic and spontaneous of the process. The results suggested that nanoporous ZnO powders was suitable as sorbent material for recovery and adsorption of U(VI) ions from aqueous solutions.  相似文献   

8.
The electrochemical oxidation of morphine (MO) and codeine (COD) has been investigated by the application of a novel glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticles/multiwalled carbon nanotubes composite (HA-FeNPs-MWCNTs/GCE). The modified electrode worked as an efficient sensor for simultaneous determination of MO and COD in the presence of uric acid. Response surface methodology was utilized to optimize the voltammetric response of the modified electrode for the determination of MO and COD. The amount of HA-FeNPs in the modifier matrix (%HA-FeNPs), the solution pH and the accumulation time were chosen as the three important operating factors through the experimental design methodology. The central composite design as a response surface approach was applied for obtaining the optimum conditions leading to maximum oxidation peak currents for MO and COD. The differential pulse voltammetry results showed that the obtained anodic peak currents were linearly proportional to concentration in the range of 0.08–32 µM with a detection limit (S/N = 3.0) of 14 nM for MO and in the range of 0.1–28 µM and with a detection limit of 22 nM for COD. The proposed method was successfully applied to determine these compounds in human urine and blood serum samples.  相似文献   

9.
A new semiorganic single crystal, tris(allylthiourea)silver(I) nitrate was grown from an aqueous solution containing silver(I) nitrate and allylthiourea by slow evaporation solution growth technique at room temperature. The crystal belongs to trigonal system with centrosymmetric space group R3 and the cell parameters are, a = 12.5090(4) Å, b = 12.5090(4) Å, c = 21.7130(8) Å, V = 3348.89 Å3, and Z = 6. The various functional groups present in the molecule are confirmed by Fourier transformed infrared spectroscopy. High transmittance is observed in the visible region and band-gap energy is calculated by Kubelka–Munk algorithm. The structure and the crystallinity of the materials were further confirmed using powder X-ray diffraction analysis. Microhardness studies were also carried out to elucidate the mechanical behavior. Thermogravimetric and differential thermal analysis reveal the purity of the sample and no decomposition is observed up to the melting point.  相似文献   

10.
The transducer of solid-state electrodes based on an epoxy-graphite composite was modified by two different methods, such as direct mixed and layer deposition of graphene (commercial and synthesized by electrochemical exfoliation of graphite). The modified electrodes were characterized by cyclic voltammetry and impedance spectroscopy. Also, scanning electron microscopy (SEM) was carried out to acquire information concerning the morphology of the composite electrode. Voltammetric measurements, in presence of [Fe(CN)6]3? as electroactive standard, determined a quasi-reversible electrochemical behavior under linear diffusion control. Electronic transference for modified and unmodified electrodes was compared. Solid-state electrode modified by inclusion of synthesized graphene showed a better electronic transference at electrode surface, due to the lower potential difference between anodic and cathodic peaks (ΔE = 125 mV) with respect to unmodified electrode (ΔE = 160 mV). Impedance spectroscopy characterization of electrode bodies in solid-state it was revealed a higher electronic conductivity and a supercapacitive behavior for the modified composites (values of intrinsic capacitances in the order of nanofarads) due to inclusions of graphite and graphene in the epoxy matrix. These inclusions were verified through SEM microscopy. The electronic conductivity and the supercapacitive character contributed both to the enhancement of electronic transference at electrode surface.  相似文献   

11.
The substitution of Sb with As in the NiSbS intermetallic compound was studied in the framework of evaluating a possible increase of the thermoelectric properties. Different NiSb1?xAsxS samples were synthesized with increasing amounts of As (0 < x < 0.66) employing a simple synthetic route using a muffle furnace. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy was used to investigate the microstructure. X-ray powder diffraction techniques were employed in order to study the possible existence of a solid solution between NiSbS and NiAsS compounds, as well as to identify the crystal structure and determine the lattice parameters. All compounds were found to crystallise with the NiSbS prototype (cP12-P213), with lattice parameters varying from a = 0.59341(7) nm (x = 0) to a = 0.56849(6) nm (x = 1). Good agreement with Vegard’s law was evidenced. Thermal measurements on NiSb1?xAsxS samples were carried out using DTA instruments to evaluate the thermal stability and the melting temperatures.  相似文献   

12.
In this study, clinoptilolite as a natural zeolite which was magnetized using precipitation of maghemite nanoparticles was coated by chitosan and then modified by thylenediamine tetra-acetic acid to add functional groups and its performance in the removal of toxic methylene blue from aqueous solution was investigated. Synthesized magnetic nanocomposite was characterized by VSM, XRD, SEM, and FTIR analyses. The saturation magnetization of the final nanocomposite was obtained as 22.2 emu/g. In addition, the factors affecting adsorption process and its optimization were investigated using response surface methodology and central composite design. Data obtained by different isotherm, adsorption kinetic and thermodynamic models were also studied. The results showed good agreement of these data with the Freundlich isotherm model (R 2 = 0.99), and it was found that adsorption follows the second-order kinetics model (R 2 = 1). Negative values of ΔG and positive values of ΔH obtained from this adsorption thermodynamic study revealed that the methylene blue adsorption process is exothermic and spontaneous. The optimum conditions to ensure maximum adsorption efficiency were determined, and included pH = 5.54, adsorbent amount of 0.03 g, temperature of 31.18 °C, and initial solution concentration of 16.21 mg/l which resulted in a removal efficiency of 99.44%. The results indicated that this nanocomposite can be used as a proper adsorbent for adsorbing methylene blue and other dye contaminants.  相似文献   

13.
A newly-developed method of complete separation and sensitive determination of o-, m-, and p-aminobenzoic acid isomers was achieved by combining open-tubular columns for capillary electrochromatography (OT-CEC) and online sample stacking. In this study, spherical gold nanoparticles were modified by a covalent attachment of mono-6-thio-β-cyclodextrin, and OT-CEC was formed by immobilizing cyclodextrin-modified gold nanoparticles (CD-AuNP) on prederivatized 3-mercaptopropyl-trimethoxysilane fused-silica capillaries. Based on the theory of moving chemical reaction boundary, effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were optimized. The optimized separations were carried out in 58 mmol/L HAc buffer at pH 3.0 using a capillary coated with CD-AuNP, while the optimized concentration was carried out in 50 mmol/L disodium hydrogen phosphate (pH 9.5). The linear ranges for m-, p-, and o-aminobenzoic acid were from 5.0 × 10?4–0.1, 5.0 × 10?4–0.1 and 1.0 × 10?4–0.1 mmol/L, respectively. And the detection limits (S/N = 3) were as low as 8.22 × 10?5, 8.21 × 10?5, and 3.76 × 10?5 mmol/L for m-, p-, and o-aminobenzoic acid, respectively. The run-to-run, day-to-day, and column-to-column reproducibilities of migration time were satisfactory with relative standard deviation values of less than 4.5 % in all cases. This method was successfully used in determining procaine hydrochloride injection sample with recoveries in the range of 96.1–106.6 % and relative standard deviations less than 5.0 %.  相似文献   

14.
An investigation was carried out into the fast determination of five homologue imidazolium cations in ionic liquids by ion chromatography using a cation-exchange column and direct conductivity detection. Ethylenediamine, complex organic acid (citric acid, oxalic acid and tartaric acid) and organic modifiers (acetonitrile) were used as mobile phase. The influences of the eluent types, eluent concentration, eluent pH and column temperature on separation of the cations were discussed. Simultaneous separation and determination of the five homologue imidazolium cations in ionic liquids were achieved under an optimum condition. The optimized mobile phase was consisted of 0.25 mmol L?1 ethylenediamine + 0.5 mmol L?1 citric acid + 3% acetonitrile (v/v) (pH 4.1), set at a flow rate of 1.0 mL min?1. The column temperature was 40 °C and detection limits were obtained in the range of 1.1–45.6 mg L?1. The relative standard deviations of the chromatographic peak areas for the cations were <3.0% (n = 5). This method was successfully applied to separate imidazolium cations in ionic liquids produced by organic synthesis. The recoveries of spiked components were 92.5–101.9%.  相似文献   

15.
The direct electrochemistry of epinephrine (EP) on a modified carbon paste electrode (CPE) was described. The electrode was modified with Zinc oxide (ZnO) nanoparticles and 1,3-dipropylimidazolium bromide as a binder. The oxidation peak potential of EP at the surface of the ionic liquid ZnO nanoparticle CPE (IL/ZnO/NP/CPE) appeared at 350 mV, which was about 80 mV lower than the oxidation peak potential at the surface of the traditional carbon CPE under a similar condition. On other hand, the oxidation peak current was increased for about three times at the surface of IL/ZnO/NP/CPE compared to CPE. The linear response range and detection limit were found to be 0.09–800 μmol L?1 and 0.06 μmol L?1, respectively. Other physiological species did not interfere in the determination of EP at the surface of the proposed sensor in the optimum condition. The proposed sensor was successfully applied for the determination of EP in real samples.  相似文献   

16.
The 25,27-di(octyloxy)calix[4]arenebenzocrown-6 (CBC) in 1,3-alternate conformation was synthesized indigenously starting from its intermediates in good yield and purity. The extraction studies of CBC were carried out by using two different phase modifiers namely isodecyl alcohol and ortho-nitrophenyl hexyl ether. Detailed investigations on the effect of various parameters like, concentration of phase modifiers, aqueous phase acidity, ligand concentration, nitrate ion concentration and effect of temperature on extraction of cesium have been carried out. The concentration of phase modifiers was optimized to be 30 % in n-dodecane to ensure optimum extraction of cesium. Stoichiometry of the extracted complex determined by slope analysis method reveals 1:1:1 molar ratio for CsNO3:CBC:HNO3. The extraction process was found to be exothermic as determined from the plot of log K ex versus 1/T. The solvent system with a composition 0.01 M CBC/30 % phase modifier/n-dodecane was found to be effective for selective separation of cesium from simulated high level liquid waste solution.  相似文献   

17.
A simple and effective approach is presented to fabricate fluorescent and magnetic dual-responsive molecularly imprinted polymers for selective recognition of moxidectin. Magnetic gelatin was prepared to provide not only easy magnetic separation, but also significant amino functionalities, allowing surface modification with fluorescein isothiocyanate isomer I and acrylic acid (AA). Based on the double bond provided by AA, molecularly imprinted polymers could be directly coated onto the surface of modified magnetic gelatin. The dual-responsive imprinting polymers feature a high adsorption capacity (87.1 mg g?1), selective fluorescence response toward moxidectin (imprinting factor = 3.6), rapid magnetic separation, and good reproducibility. Subsequently, the dual-responsive composites were successfully applied as sorbents for selective determination of moxidectin. Upon optimization, a linear range of 10–1000 ng mL?1 and a detection limit of 6 ng mL?1 were achieved. The results agree well with those obtained by the classic HPLC–FLD method (r = 0.9935). This developed strategy may find its potential application in rapid, simple, sensitive, and selective determinations of target molecules in complex samples.  相似文献   

18.
Micellar liquid chromatography was employed for the monitoring of procainamide and its metabolite N-acetylprocainamide using a C18 column. Sodium dodecyl sulphate (SDS) and modifier concentrations were optimised in order to obtain minimum analysis time, maximum sensitivity and good resolution. The optimum chromatographic conditions were as follows: flow rate 1 mL min?1, injection volume 20 μL, temperature at 25 °C, respectively. The mobile phase consisted of 0.05 M SDS-1% (v/v) butanol–phosphate buffer (10 mM, pH 7, 0.9%, w/v) NaCl using a detection wavelength at 280 nm. Validation studies were carried out according to the ICH guideline and included the determination of calibration curves (r 2 > 0.999), intra- and inter-day precisions (CV < 3.9%), robustness and interference studies, respectively. The recoveries in spiked serum samples were adjusted. Finally, the optimized method was applied to serum samples of patients treated with antiarrhythmics, and the results were compared with those given by a reference method where a good correlation was obtained.  相似文献   

19.
The paper reports on the wetting characterization of two surfaces presenting reentrant shapes at micro- and nanoscale using low surface tension liquids (down to 28 mN/m). On the one hand, mushroom-like microstructures are fabricated by molding poly(dimethylsiloxane) (PDMS) onto a patterned sacrificial photoresist bilayer. On the other hand, zinc oxide nanostructures (ZnO NS) are synthesized by easy and fast chemical bath deposition technique. The PDMS and ZnO NS surfaces are then chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane in vapor phase. Both PDMS and ZnO NS surfaces exhibit a large apparent contact angle (>150°) and contact angle hysteresis varying from 50° to a quasi-null value. This large discrepancy can be ascribed to the length scale and topography of the structures, promoting either a vertical imbibition or a lateral spreading within the roughness.  相似文献   

20.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号