首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Number of members makes a difference : The [2+2+2] intramolecular cyclotrimerisation of a new series of 20‐ and 25‐membered azamacrocycles catalysed by the Wilkinson's catalyst are reported (see scheme). The 20‐ and 25‐membered azamacrocycles show different reactivity. Why? Theoretical calculations give insight into the reactivity differences observed for the 20‐ and 25‐membered macrocycles.

  相似文献   


2.
Allene–ene–allene ( 2 and 5 ) and allene–yne–allene ( 3 and 7 ) N‐tosyl and O‐linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3)3] was evaluated. Substrates 2 and 5 , which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7 , which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels–Alder reaction on N‐tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction.  相似文献   

3.
4.
The mechanism of the Rh‐catalysed [2+2+2] cycloaddition reaction of diynes with monoynes has been examined using ESI‐MS and ESI‐CID‐MS analysis. The catalytic system used consisted of the combination of a cationic rhodium(I) complex with bisphosphine ligands, which generates highly active complexes that can be detected by ESI(+) experiments. ESI‐MS on‐line monitoring has allowed the detection for the first time of all of the intermediates in the catalytic cycle, supporting the mechanistic proposal based mainly on theoretical calculations. For all ESI‐MS experiments, the structural assignments of ions are supported by tandem mass spectrometry analyses. Computer model studies based on density functional theory (DFT) support the structural proposal made for the monoyne insertion intermediate. The collective studies provide new insight into the reactivity of cationic rhodacyclopentadienes, which should facilitate the design of related rhodium‐catalysed C? C couplings.  相似文献   

5.
An in depth study of the reactivity of an N‐heterocyclic carbene (NHC)‐stabilized silylene monohydride with alkynes is reported. The reaction of silylene monohydride 1 , tBu3Si(H)Si←NHC, with diphenylacetylene afforded silole 2 , tBu3Si(H)Si(C4Ph4). The density functional theory (DFT) calculations for the reaction mechanism of the [2+2+1] cycloaddition revealed that the NHC played a major part stabilizing zwitterionic transition states and intermediates to assist the cyclization pathway. A significantly different outcome was observed, when silylene monohydride 1 was treated with phenylacetylene, which gave rise to supersilyl substituted 1‐alkenyl‐1‐alkynylsilane 3 , tBu3Si(H)Si(CH?CHPh)(C?CPh). Mechanistic investigations using an isotope labelling technique and DFT calculations suggest that this reaction occurs through a similar zwitterionic intermediate and subsequent hydrogen abstraction from a second molecule of phenylacetylene.  相似文献   

6.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

7.
A systematic theoretical study has been performed on the recently reported RhI‐catalyzed [3+2+2] carbocyclization reactions between alkenylidenecyclopropanes (ACPs) and alkynes. With the aid of theoretical calculations, two possible mechanisms, that is, alkene‐carbometalation‐first and alkyne‐carbometalation‐first mechanisms, are examined in this study. In the oxidative addition step, the possibility of reaction on either the distal or proximal C? C bond of the cyclopropane group has been evaluated. The calculations indicate that the alkene‐activation‐first mechanism is more favored for the overall catalytic cycle. This mechanism involves four steps, that is, oxidative addition of the distal (rather than the proximal) C? C bond of cyclopropane group, alkene carbometalation, alkyne carbometalation, and reductive elimination. The rate‐determining step in the overall catalytic cycle is the carbometalation of the alkyne (i.e., the alkyne‐insertion step) and this step also determines the regioselectivity. Finally, the origin of the regioselectivity is determined by the steric effect (i.e., the steric crowding between the electron‐withdrawing group on alkyne and other ligands on the rhodium center) in the alkyne‐insertion step.  相似文献   

8.
The [W(CO)5]-catalyzed cycloisomerization reaction of 1,1-disubstituted 4-pentyn-1-ol derivatives has been studied from both, an experimental and theoretical point of view. Three different catalytic systems have been evaluated {preformed [(thf)W(CO)5], [W(CO)6]/excess Et3N, and [W(CO)6]/2 mol % Et3N]. We have found that the reaction proceeds to give the formal endo- or exo-cycloisomerization products depending on the amount of Et3N used and on the substitution along the alkyl chain of the starting alkynol. The theoretical study allowed us to find the mechanisms of the reactions which explain the formation of the formal endo- or exo-cycloisomerization products.  相似文献   

9.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

10.
11.
12.
The potential‐energy surfaces of the reactions of dirhodium tetracarboxylate (Rh2II,II) catalyzed nitrene (NR) insertion into C H bonds were examined by a DFT computational study. A pure Becke exchange functional (B88) rather than a hybrid exchange functional (B3, BHandH) was found to be appropriate for the calculation of the energy difference between the singlet and triplet Rh2II,II–NH nitrene species. Rh2II,II–NR1 (R1=(S)‐2‐methyl‐1‐butylformyl) is thermodynamically more favorable with a free energy lower than that of Rh2II,II–N(PhI)R1. The singlet and triplet states of Rh2II,II–NR1 have similar stability. Singlet Rh2II,II–NR1 undergoes a concerted NR insertion into the C H bond with simultaneous formation of the N H and N C bonds during C H bond cleavage; triplet Rh2II,II–NR1 undergoes H atom abstraction to produce a diradical, followed by subsequent bond formation by diradical recombination. The singlet pathway is favored over the triplet in the context of the free energy of activation and leads to the retention of the chirality of the C atom in the NR insertion product. The reactivities of the C H bonds toward the nitrene‐insertion reaction follow the order tertiary>secondary>primary. Relative reaction rates were calculated for the six reaction pathways examined in this work.  相似文献   

13.
Quantum chemical calculations by using density functional theory at the B3LYP level have been carried out to elucidate the reaction course for the addition of ethylene to [OsO2(CH2)2] (1). The calculations predict that the kinetically most favorable reaction proceeds with an activation barrier of 8.1 kcal mol(-1) via [3+2] addition across the O=Os=CH2 moiety. This reaction is -42.4 kcal mol(-1) exothermic. Alternatively, the [3+2] addition to the H2C=Os=CH2 fragment of 1 leads to the most stable addition product 4 (-72.7 kcal mol(-1)), yet this process has a higher activation barrier (13.0 kcal mol(-1)). The [3+2] addition to the O=Os=O fragment yielding 2 is kinetically (27.5 kcal mol(-1)) and thermodynamically (-7.0 kcal mol(-1)) the least favorable [3+2] reaction. The formal [2+2] addition to the Os=O and Os=CH2 double bonds proceeds by initial rearrangement of 1 to the metallaoxirane 1 a. The rearrangement 1-->1 a and the following [2+2] additions have significantly higher activation barriers (>30 kcal mol(-1)) than the [3+2] reactions. Another isomer of 1 is the dioxoosmacyclopropane 1 b, which is 56.2 kcal mol(-1) lower in energy than 1. The activation barrier for the 1-->1 b isomerization is 15.7 kcal mol(-1). The calculations predict that there are no energetically favorable addition reactions of ethylene with 1 b. The isomeric form 1 c containing a peroxo group is too high in energy to be relevant for the reaction course. The accuracy of the B3LYP results is corroborated by high level post-HF CCSD(T) calculations for a subset of species.  相似文献   

14.
The [2+2+1] cycloaddition reaction of 1,4-diazabutadienes, carbon monoxide and ethylene catalyzed by iron carbonyl complexes produces pyrrolidin-2-one derivatives. Only one of the two imine moieties is activated during the catalysis. The mechanism of this cycloaddition reaction is studied by density functional theory at the B3LYP/6-311++G(d,p) level of theory. In accordance with experimental results, a [(diazabutadiene)Fe(CO)(3)] complex of square-pyramidal geometry is used as the starting compound S of the catalytic cycle. Based on experimental experience, the reaction with ethylene is considered to take place before any interaction with carbon monoxide. According to the computational results, the reaction does not proceed by ligand dissociation followed by addition of ethylene and subsequent intramolecular activation steps but by the approach of an ethylene molecule from the base of the square-pyramidal complex. This reaction yields an intermediate I(4) in which ethylene is coordinated to the iron centre and a new C-C bond between ethylene and one of the imine groups is formed. The insertion of a terminal carbon monoxide ligand into the metal-carbon bond between ethylene and iron produces the key intermediate I(7). The reaction proceeds by metal-assisted formation of a lactam P. The catalytic cycle is closed by a ligand-exchange reaction in which the diazabutadiene ligand substitutes P with reformation of S. This reaction pathway is found to be energetically favored over a reductive elimination. It leads to the experimentally observed heterocyclic product P and a reactive [Fe(CO)(3)] fragment.  相似文献   

15.
Whereas the cluster [Mo3S4(acac)3(py)3]+ ([ 1 ]+, acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3S4(acac)3(py)3]+ ([ 2 ]+) remains unaffected under the same conditions. The reactions of cluster [ 1 ]+ show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C?C atoms of the alkyne and a Mo(μ‐S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [ 2 ]+ with alkynes feature ΔG values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol?1, therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital‐energy decomposition analysis (LMO‐EDA) indicates that substitution of the Mo atoms in cluster [ 1 ]+ by W induces changes in the electronic structure of the cluster that result in weaker intra‐ and inter‐fragment orbital interactions.  相似文献   

16.
The potential-energy surfaces of the cycloaddition reaction Cp(2)M+C60-->Cp(2)M(C60) (Cp=eta5-C(5)H(5); M=Cr, Mo, and W) were studied at the B3LYP/LANL2DZ level of theory. Two competing reaction pathways were found, which can be classified as [6,5] attack (path A) and [6,6] attack (path B). Given the same reaction conditions, the [6,6]-attack pathway for cycloaddition to C60 is more favorable than the [6,5]-attack pathway, both kinetically and thermodynamically. A qualitative model, based on the theory of Pross and Shaik, was used to develop an explanation for the reaction barrier heights. Thus, our theoretical findings suggest that the singlet-triplet splitting DeltaE(st) (=E(triplet)-E(singlet)) of the 16-electron d4 Cp(2)M and C60 species are a guide to predicting their reactivity towards cycloaddition. Our model results demonstrate that the propensity for cycloaddition to C60 increases in the order Cp(2)Cr相似文献   

17.
No templates needed : The title reaction makes it easy to construct the bicyclo[6.3.0]undecadienone framework in high yields (see scheme). A template effect is not required to achieve this ring‐closing reaction efficiently. The present method can be applied to the construction of bicyclo[5.3.0] and bicyclo[4.3.0] ring systems. Ts=p‐toluenesulfonyl.

  相似文献   


18.
The synthesis of carbapenems from 4-(2-propynyl)azetidinones assisted by both Ag+ and [W(CO)5] was theoretically investigated by using the B3LYP/6-31+G(d)-LANL2DZ level, taking into account the effect of solvent by the PB-SCRF model implemented in Jaguar. According to our results, the silver-assisted cyclization is a concerted process for which the low yield experimentally observed could mainly stem from the alkaline hydrolysis of the beta-lactam ring. This process is very efficiently catalyzed by Ag+, making it competitive with the formation of the carbapenem. The cycloisomerization of 4-(2-propynyl)azetidinone promoted by [W(CO)5] is proposed as an alternative synthetic strategy to obtain the carbapenem. The endo cycloisomerization is by far the most favorable one. When the process is assisted by [(thf)W(CO)5], although the main product is the carbapenem, the formation of a carbene complex represents a certain competition. The presence of a Me3N molecule from the very start of the reaction causes an important catalytic effect considerably reducing the energy barriers corresponding to the H atom transfers and rendering a very efficient process. Moreover, this catalytic action determines the evolution of the system through only one mechanistic route which produces the carbapenem, hindering the formation of the carbene. Therefore, the cycloisomerization of 4-(2-propynyl)azetidinone promoted by [(Me3N)W(CO)5] constitutes an interesting alternative to the silver-assisted cyclization.  相似文献   

19.
The mechanism of the palladium-catalysed [3+2] intramolecular cycloaddition of alkylidenecyclopropanes to alkynes has been computationally explored at DFT level. The energies of the reaction intermediates and transition states for different possible pathways have been calculated in a model system that involves the use of PH3 as a ligand. The results obtained suggest that the most favourable reaction pathway involves the initial C--C oxidative addition of the cyclopropane to a Pd0 complex to give an alkylidenepalladacyclobutane, which isomerises to a methylenepalladacyclobutane intermediate. Subsequent cyclisation by alkyne carbometallation, followed by reductive elimination affords the final product. An alternative mechanism consisting of a palladaene-type rearrangement is less probable in terms of Gibbs energy, but cannot be fully discarded because it is competitive if one considers electronic energies. For substrates that present an ester group at the terminal position of the triple bond we have found an alternative, more favourable mechanistic route that explains why the [3+2] cycloaddition of these types of systems does not lead to the expected cycloadducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号