首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A straightforward and original methodology allowing the synthesis of Janus-type dendrimer-like poly(ethylene oxide)s (PEOs) carrying orthogonal functional groups on their surface is described. The use of 3-allyloxy-1,2-propanediol (1) as a latent AB2-type heterofunctional initiator of anionic ring-opening polymerization (AROP) of ethylene oxide (EO) and of selective branching agents of PEO chain ends served to construct the two dendrons of these dendrimer-like PEOs, following a divergent pathway. Thus, the first PEO generation of the first dendron was grown by AROP from 1 followed by the reaction of the corresponding alpha-allyl,omega,omega'-bishydroxy- heterofunctional PEO derivative with 2-(3'-chloromethybenzyloxymethyl)-2-methyl-5,5-dimethyl-1,3-dioxane (2) used as a branching agent. This afforded the dendron A with four latent peripheral hydroxyls protected in the form of two ketal rings. The remaining alpha-allylic double bond of the PEO thus prepared was transformed into two hydroxyl groups using OsO4 in order to create the first PEO generation of the dendron B by AROP of EO. Allyl chloride (3) was then used as another (latent) branching agent to react with the terminal hydroxyl of the corresponding PEO chains. Deprotection under acidic conditions of the ketal groups of dendron A, followed by AROP of EO, afforded the second PEO generation on this face. This alternate and divergent procedure, combining AROP of EO and selective branching of PEO branches, could be readily iterated, one dendron after the other up to the generation six, leading to a Janus-type dendrimer-like PEO exhibiting a total mass of around 300 kg/mol and possessing 64 peripheral groups on each face. The possibility of orthogonal functionalization of the surfaces of such Janus-type dendritic PEOs was exploited. Indeed, a dendron of generation 4 was functionalized with hydroxyl functions at its periphery, whereas the other was end-capped with either tertiary amino or disulfide groups. In a variant of this strategy, azido groups and acetylene could also be orthogonally introduced at the periphery of the fourth generation Janus-type dendrimer-like PEO and subjected to polycondensation by a 1,3-dipolar cycloaddition reaction. This afforded a necklace-like covalent assembly of dendrimer-like PEOs through the formation of stable [1,2,3]-triazole linkages.  相似文献   

2.
A theoretical treatment of the glass temperature of dendritic polymers is presented. The influences of polymer backbone, end group, initiator core, branching unit, composition and functionality are discussed. In dendritic polymers the glass temperature is dependent only on the generation number of dendritic growth and thus only on the molecular weight of a dendron, but not on the molecular weight of the whole molecule. It is governed primarily by the backbone glass temperature and depends little on branching functionality. Only minor differences between linear polymer and dendrite are obtained, since the influences of end groups and branching compensate each other to a large extent. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
We prepared a series of amphiphilic dendron coils (1-3) containing aliphatic polyether dendrons with octadecyl peripheries and a poly(ethylene oxide) (PEO) coil (DP = 44). The molecular design in this study is focused on the variation of dendron generation (from first to third) with a fixed linear coil, upon which the thermal and self-assembling behavior of the dendron coils was investigated in the bulk. All the dendron coils exhibit two crystalline phases designated as k1 (both crystalline octadecyl chains and PEO) and k2 states (crystalline octadecyl chains and molten PEO). Crystallinities for both octadecyl peripheries and the PEO decrease as generation increases. In particular, the dendron coil (3) containing third generation shows a drastic reduction of the PEO crystallinity, which is attributed to the considerable chain folding and plasticization effects by the largest hydrophilic dendritic core segment. All the crystalline phases are bilayered lamellar morphologies. On going from k1 to k2, the periodic lamellar thickness decreases in the dendron coil (1) with first generation, but interestingly increases in 3. After melting of octadecyl peripheries, 1 shows no mesophase (i.e., liquid crystalline phase). Additionally, dendron coil 2 (3) displays a network cubic mesophase with Ia3d symmetry (micellar cubic with Pm3n) which is transformed into a lamellar (hexagonal columnar) mesophase upon heating. Remarkably, the temperature-dependent mesomorphic behavior in 2 and 3 is a completely reverse pattern in comparison with conventional linear-linear block copolymers. The unusual bulk morphological phenomena in the crystalline and liquid crystalline phases can be elucidated by the dendron coil architecture and the associated coil conformational energy.  相似文献   

4.
The two-photon ionization (TPI) process (308 and 266 nm) of stilbene dendrimers having a stilbene core and benzyl ether type dendrons has been investigated in an acetonitrile and 1,2-dichloroethane mixture (3:1) in order to elucidate the dendrimer effects. The quantum yield of the formation of stilbene core radical cation during the 308-nm TPI was independent of the dendron generation of the dendrimers, whereas a generation dependence of the quantum yield of the radical cation was observed during the 266-nm TPI, where both the stilbene core and benzyl ether type dendron were ionized, suggesting that the subsequent hole transfer occurs from the dendron to the stilbene core, and that the dendron acts as a hole-harvesting antenna. The neutralization rate of the stilbene core radical cation with the chloride ion, generated from the dissociative electron capture by 1,2-dichloroethane, decreased with the increase in the dendrimer generation, suggesting that the dendron is an effective shield of the stilbene core radical cation against the chloride ion.  相似文献   

5.
A new dendron with peripheral long alkyl chains and containing five C(60) units in the branching shell has been prepared and attached to a Fréchet-type dendron functionalized with ethylene glycol chains. The peripheral substitution of the resulting globular dendrimer with hydrophobic chains on one hemisphere and hydrophilic groups on the other provides the perfect hydrophobic/hydrophilic balance allowing the formation of stable Langmuir films. Furthermore, a perfect reversibility has been observed in successive compression/decompression cycles. The diblock structure of the dendrimer has been also crucial for the efficient transfer of the Langmuir films in order to obtain well-ordered multilayered Langmuir-Blodgett films. This approach appears particularly interesting since functional groups not well adapted for the preparation of Langmuir and Langmuir-Blodgett films such as fullerenes can be attached into the branching shell of the dendritic structure and, thus, efficiently incorporated in thin ordered films.  相似文献   

6.
Langevin dynamics simulations are performed on linear-dendritic diblock copolymers containing bead-spring, freely jointed chains composed of hydrophobic linear monomers and hydrophilic dendritic monomers. The critical micelle concentration (CMC), micelle size distribution, and shape are examined as a function of dendron generation and architecture. For diblock copolymers with a linear block of fixed length, it is found that the CMC increases with increasing dendron generation. This trend qualitatively agrees with experiments on linear-dendritic diblock and triblock copolymers with hydrophilic dendritic blocks and hydrophobic linear blocks. The flexibility of the dendritic block is altered by varying the number of spacer monomers between branch points in the dendron. When comparing linear-dendritic diblock copolymers with similar molecular weights, it is shown that increasing the number of spacer monomers in the dendron lowers the CMC due to an increase in flexibility of the dendritic block. Analysis on the micellar structure shows that linear-dendritic diblock copolymers pack more densely than what would be expected for a linear-linear diblock copolymer of the same molecular weight.  相似文献   

7.
The effect of branching point structures and densities is studied between azido‐containing hyperbranched polymers and cross‐linked nanogels on their loading efficiency of alkynyl‐containing dendron molecules. Hyperbranched polymers that contained “T”‐shaped branching linkage from which three chains radiated out and cross‐linked nanogels that contained “X”‐shaped branching linkage with four radiating chains are synthesized in microemulsion using either atom transfer radical polymerization (ATRP) or conventional radical polymerization (RP) technique. Both polymers have similar density of azido groups in the structure and exhibit similar hydrodynamic diameter in latexes before purification. Subsequent copper‐catalyzed azide–alkyne cycloaddition reactions between these polymers and alkynyl‐containing dendrons in various sizes (G1–G3) demonstrate an order of dendron loading efficiencies (i.e., final conversion of alkynyl‐containing dendron) as hyperbranched polymers > nanogels synthesized by ATRP > nanogels synthesized by RP. Decreasing the branching density or using smaller dendron molecules increases the click efficiency of both polymers. When G2 dendrons with a molecular weight of 627 Da are used to click with the hyperbranched polymers composed of 100% inimer, a maximum loading efficiency of G2 in the loaded hyperbranched polymer is 58% of G2 by weight. These results represent the first comparison between hyperbranched polymers and cross‐linked nanogels to explore the effect of branching structures on their loading efficiencies.

  相似文献   


8.
We synthesized molecules containing one or two dendritic segments and a rigid-rod-like segment with their structures in the solid state. The molecules with rod–dendron or dendron–rod–dendron architecture had biphenyl ester rigid segments and 3,4,5 tris(n-dodecyloxy)benzoate of first or second generation as their dendritic segments. The variables investigated included the rod segment length as well as dendron generation, and all materials obtained were characterized by optical microscopy, differential scanning calorimetry, and X-ray scattering. Depending on the size of the rod segment and generation number of the dendritic segment, molecules organized into smectic, columnar, or cubic phases, and the symmetries observed were dominated by the anisotropic rod–rod interactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3501–3518, 2003  相似文献   

9.
Syntheses of several examples of a new type of trivalent building blocks for the preparation of aliphatic polyester dendrimers are presented. Starting from the well-known mono-O-benzylidenepentaerythritol, AB3 type acid dendrons can be obtained in high yield in only two steps. Other triprotected bis-2,2-(hydroxymethyl)-3-hydroxypropanoic acid derivatives with varying protecting groups were also synthesized readily. This type of dendron was used in combination with 2,2′-bis(hydroxymethyl) propanoic acid (bis-HMPA) divalent dendrons to produce low generation mixed polyester dendrimers with increased number of branching points.  相似文献   

10.
The g‐scale synthesis of the fourth generation dendronized monomer 3 d and its Suzuki oligomerization are reported. The monomer synthesis uses the fact that the addition of two G‐3 fragments to aryldibromide 3 c which already contains one branching unit is more practical than an alternative approach by which a G‐4 dendron is added to a respective compound. The Suzuki cross‐coupling of 3 d gives oligomeric material 5 , a fraction of which with a molecular weight of Mn = 170 000 is obtained by preparative gel permeation chromatography. This finding shows that the Suzuki cross‐coupling reaction can cope with considerable steric loading of coupling components which opens up new perspectives for its applicability both in organic and polymer chemistry.  相似文献   

11.
合成了1~3代的嵌段树枝状分子聚苄醚-聚脂肪酯(Gx-PBE-b-Gx-PMPA, x=1,2,3)和两亲嵌段树枝状分子聚苄醚-周边含羟基的聚脂肪酯[Gx-PBE-b-Gx-PMPA(OH)x2, x=1,2,3]. PMPA(OH)x2-树枝片(Dendron)段周边的羟基数目分别是2, 4和8. 通过1H NMR, 13C NMR, FTIR和基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)(或场解析电离质谱)技术表征了Gx-PBE-b-Gx-PMPA和Gx-PBE-b-Gx-PMPA(OH)x2的结构. 同时, 采用变温FTIR光谱研究了在两亲嵌段树枝状分子中形成的氢键模式. 结果表明, 随着树枝片代数的增加, 两亲嵌段树枝状分子内趋向于形成作用较弱的分子内氢键, 说明形成3代两亲嵌段树枝状分子的三维结构削弱了羟基形成分子间氢键的能力.  相似文献   

12.
A series of second generation of amphiphilic dendronized homopolymers are efficiently synthesized, and their thermoresponsiveness in aqueous solutions and secondary structures in methanol solutions are described. These polymers are constructed in each repeat unit with various generations of hydrophobic 4-aminoproline and hydrophilic oligoethylene glycol (OEG)-based dendrons, and their over-all hydrophilicity is tuned by varying these dendron generations. Polymers with or without the first generation of proline dendron show good water solubility at room temperature, but exhibit typical thermoresponsive behaviors at elevated temperatures as characterized by turbidity measurements using UV-vis spectroscopy, while the polymer with the secondary generation of proline dendron is not soluble in water. All polymers show ordered secondary structures as evidenced by the optical rotation and circular dichroism experiments. Finally, assembly of these amphiphilic homopolymers into porous films via breath figure (BF) technique is described, and polymer structures are found to show significant influence on the morphology of porous film.  相似文献   

13.
This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.  相似文献   

14.
A series of 1,3,5-phenylene-based rigid dendritic porphyrins were synthesized by Suzuki coupling between a porphyrin core and dendron units. The intramolecular energy transfer was studied by absorption and fluorescence spectroscopies. The encapsulation of the porphyrin core within the 1,3,5-phenylene dendron units was found to provide highly efficient energy transfer from the dendron units to the porphyrin core. The dendritic wedge structure affected the energy transfer efficiency. The 1,3,5-phenylene-based rigid dendron units act as highly efficient light-harvesting antennae. These dendritic porphyrins have also been examined as C(60) hosts and substrate-selective oxidation catalysts. The attachment of the second generation of 1,3,5-phenylene-based dendron units with the porphyrin core enabled a stable inclusion of C(60) in toluene. Furthermore, the size and shape of the nanospace in the rigid dendritic porphyrins were found to affect the selectivity of substrates in the catalytic olefin oxidations.  相似文献   

15.
Dendrimers with 2,5-diarylsilole at the core are readily synthesized by the Ni-catalyzed reaction of 1,1,2,2-tetramethyldisilane and 1,6-diynes having poly(benzyl ether)-dendron units. The dendrimers display, upon excitation of the silole ring, an emission at about 500 nm. The fluorescence quantum yield of the dendrimers increases with increasing the generation of the dendron units. In addition, upon excitation of dendron units in the periphery, the dendrimers also display an emission from the silole ring at the core through the energy transfer from the dendron units to the silole core within the dendrimers.  相似文献   

16.
Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.  相似文献   

17.
Five new 4,4'-bipyridinium (viologen) core dendrimers containing a Frechet (Fn, n = 1-3, first to third generation) and a Newkome (Nn, n = 1-3) dendron linked to each of the termini of the viologen residue were prepared and characterized. These macromolecules (FnNn) were prepared according to synthetic methodology already developed by our group. The electrochemical behavior of these dendrimers is characterized by the stepwise reduction of the viologen nucleus (V(2+)/V(+) and V(+)/V). The recorded half-wave potentials are affected by dendron growth in the three surveyed solvent media (dichloromethane, tetrahydrofuran, and acetonitrile). The size of the Newkome dendron has a more pronounced effect on the half-wave potentials than the size of the Frechet dendron. However, increasing the size of the Frechet dendron diminishes the magnitude of the cathodic potential shifts resulting from Newkome dendron growth. The largest dendrimers investigated (F1N3 and F2N3) exhibit quasi-reversible voltammetric behavior. The diffusion coefficients of these molecules were also determined using pulse gradient stimulated echo NMR techniques.  相似文献   

18.
We report on the interesting interfacial behavior of oligoethylene glycol or OEGylated linear dendron monolayers at the air-water interface as a function of (a) carbazole dendron generation, (b) the length of the OEG units, and (c) the surface pressure applied upon compression. Surface pressure-area isotherms, hysteresis studies, and isobaric creep measurement revealed a structure-property relationship consistent with the hydrophilic-lipophilic balance of a linear dendron with the OEG group serving as the surface anchor to the water subphase. AFM studies revealed that all the OEGylated carbazole dendrons self-assemble into spherical morphology at low surface pressures but form ribbonlike structures as the surface pressure is increased. This nanostructuring is primarily imparted by the increase in van der Waals forces with increasing amount of carbazole units per dendron generation on a hydrophilic mica surface. Further, electrochemical cross-linking of the carbazole molecules by cyclic voltammetery (CV) on doped Si wafer has enabled the formation of an LB film monolayer with a secondary level of organization in the monolayer imparted by the inter- and intramolecular cross-linking among the carbazole units. This study should provide a basis for monolayer film materials based on combining the LB technique and electrochemical cross-linking for nanostructuring superstructures at the air-water interface.  相似文献   

19.
New carborane-containing dendrons based on a 2,2-bis(hydroxymethyl)propanoic acid scaffold have been prepared for applications in boron neutron capture therapy. A generation-2 carborane-containing dendron carrying 40 boron atoms was the highest generation synthetically available due to the steric crowding. The structure of this dendron has been simulated by molecular dynamics. A 10-carbon linker carrying a carboxylic group has been installed at the focal point of the dendron to distance the attachment point from the sterically hindered core.  相似文献   

20.
We have investigated the growth of first generation branched polyamidoamine dendrons on silicon dioxide as a way to tailor and control the subsequent chemisorption of transition metal coordination complexes. Beginning with straight-chain alkyl, amine-terminated self-assembled monolayers as anchors, we find that the efficiency of the dendritic branching step depends on the length of the anchor, it being nearly perfect on a 12-carbon chain anchor. The reaction of these layers, both the anchor layers and the first generation dendrons, with Ta[N(CH3)2]5 and Ti[N(CH3)2]4 have been examined in ultrahigh vacuum using X-ray photoelectron spectroscopy. We find that the saturation coverage increases with the density of terminal -NH2 groups; thus, the branching step has effectively amplified the chemisorptive capacity of the surface. Concerning the spatial extent of reaction we find that it depends on the thickness and structure of the organic layer. The thinnest layer cannot prevent penetration of the metal complex to the organic/SiO2 interface, where it can react with residual -OH, whereas, on the longer straight chain anchor, reaction occurs exclusively at the terminal -NH2 group. On the branched dendrons, the situation is more complex, and reaction occurs not only with the terminal -NH2 group but also likely with functional groups, such as -NH-(C=O)-, on the backbone of the branched dendron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号