首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis, here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in C, we consider functions fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and nm, sharing a rational function and we show that f/g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |n ? m| ≥ 5, then fn(x)fm(ax + b) ? w has infinitely many zeros. Finally, we examine branched values for meromorphic functions fn(x)fm(ax + b).  相似文献   

2.
Let G be a graph, and g, f: V (G) → Z+ with g(x) ≤ f(x) for each xV (G). We say that G admits all fractional (g, f)-factors if G contains an fractional r-factor for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for any xV (G). Let H be a subgraph of G. We say that G has all fractional (g, f)-factors excluding H if for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for all xV (G), G has a fractional r-factor F h such that E(H) ∩ E(F h ) = θ, where h: E(G) → [0, 1] is a function. In this paper, we show a characterization for the existence of all fractional (g, f)-factors excluding H and obtain two sufficient conditions for a graph to have all fractional (g, f)-factors excluding H.  相似文献   

3.
We present necessary and sufficient conditions on planar compacta K and continuous functions f on K in order that f generate the algebras P(K), R(K), A(K) or C(K). We also unveil quite surprisingly simple examples of non-polynomial convex compacta K ? C and fP(K) with the property that fP(K) is a homeomorphism of K onto its image, but for which f ?1 ? P(f(K)). As a consequence, such functions do not admit injective holomorphic extensions to the interior of the polynomial convex hull \(\widehat K\). On the other hand, it is shown that the restriction f*|G of the Gelfand-transform f* of an injective function fP(K) is injective on every regular, bounded complementary component G of K. A necessary and sufficient condition in terms of the behaviour of f on the outer boundary of K is given in order that f admit a holomorphic injective extension to \(\widehat K\). We also include some results on the existence of continuous logarithms on punctured compacta containing the origin in their boundary.  相似文献   

4.
We give all solutions of the equation f(n) = g(n) + h(n) for every n ∈ ?, where f is a completely multiplicative, g is a 2-additive, and h is a 3-additive function. We also determine all completely multiplicative functions f and all q-additive functions g for which f(n) = g 2(n) for every n ∈ ?.  相似文献   

5.
A martingale transform T, applied to an integrable locally supported function f, is pointwise dominated by a positive sparse operator applied to |f|, the choice of sparse operator being a function of T and f. As a corollary, one derives the sharp A p bounds for martingale transforms, recently proved by Thiele-Treil-Volberg, as well as a number of new sharp weighted inequalities for martingale transforms. The (very easy) method of proof (a) only depends upon the weak-L 1 norm of maximal truncations of martingale transforms, (b) applies in the vector valued setting, and (c) has an extension to the continuous case, giving a new elementary proof of the A 2 bounds in that setting.  相似文献   

6.
A k-total coloring of a graph G is a mapping ?: V (G) ? E(G) → {1; 2,..., k} such that no two adjacent or incident elements in V (G) ? E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v: We say that ? is a k-neighbor sum distinguishing total coloring of G if f(u) 6 ≠ f(v) for each edge uvE(G): Denote χ Σ (G) the smallest value k in such a coloring of G: Pil?niak and Wo?niak conjectured that for any simple graph with maximum degree Δ(G), χ Σ ≤ Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K 4-minor free graph G with Δ(G) > 5; χ Σ = Δ(G) + 1 if G contains no two adjacent Δ-vertices, otherwise, χ Σ (G) = Δ(G) + 2.  相似文献   

7.
Block sensitivity (bs(f)), certificate complexity (C(f)) and fractional certificate complexity (C*(f)) are three fundamental combinatorial measures of complexity of a boolean function f. It has long been known that bs(f) ≤ C*(f) ≤ C(f) = O(bs(f)2). We provide an infinite family of examples for which C(f) grows quadratically in C*(f) (and also bs(f)) giving optimal separations between these measures. Previously the biggest separation known was \(C(f) = C*(f)^{\log _{4,5} 5}\). We also give a family of examples for which C*(f)= Ω (bs(f)3/2).These examples are obtained by composing boolean functions in various ways. Here the composition fog of f with g is obtained by substituting for each variable of f a copy of g on disjoint sets of variables. To construct and analyse these examples we systematically investigate the behaviour under function composition of these measures and also the sensitivity measure s(f). The measures s(f), C(f) and C*(f) behave nicely under composition: they are submultiplicative (where measure m is submultiplicative if m(fog) ≤ m(f)m(g)) with equality holding under some fairly general conditions. The measure bs(f) is qualitatively different: it is not submultiplicative. This qualitative difference was not noticed in the previous literature and we correct some errors that appeared in previous papers. We define the composition limit of a measure m at function f, m lim(f) to be the limit as k grows of m(f (k))1/k , where f (k) is the iterated composition of f with itself k-times. For any function f we show that bs lim(f) = (C*)lim(f) and characterize s lim(f); (C*)lim(f), and C lim(f) in terms of the largest eigenvalue of a certain set of 2×2 matrices associated with f.  相似文献   

8.
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

9.
For any 0 < ? < 1 one can find a measurable set E ? [0, 1] with the measure |E| > 1 ? ? such that for each function f(x) ε L 1 (0, 1) a function g(x) ε L 1 (0, 1) exists such that it coincides with f (x) on E, its Fourier—Walsh series converges to it in the metric of L 1 (0, 1), and all nonzero terms of the sequence of Fourier coefficients of the new function obtained by the Walsh system have the modulo decreasing order; consequently, the greedy algorithm for this function converges to it in the L 1 (0, 1)-norm.  相似文献   

10.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

11.
In this note, we study the admissible meromorphic solutions for algebraic differential equation fnf' + Pn?1(f) = R(z)eα(z), where Pn?1(f) is a differential polynomial in f of degree ≤ n ? 1 with small function coefficients, R is a non-vanishing small function of f, and α is an entire function. We show that this equation does not possess any meromorphic solution f(z) satisfying N(r, f) = S(r, f) unless Pn?1(f) ≡ 0. Using this result, we generalize a well-known result by Hayman.  相似文献   

12.
It is well known that if m is an L p -multiplier for the Fourier transform on \({\mathbb{R}^n}\) , (1 < p < ∞) then there exists a pseudomeasure σ such that T m fσ * f . A similar problem is discussed for the L p ?Fourier multipliers for \({\mathcal{H}}\) -valued functions on the Heisenberg group, where \({\mathcal{H}}\) is a separable Hilbert space.  相似文献   

13.
We obtain exact constants in Jackson-type inequalities for smoothness characteristics Λk(f), k ∈ N, defined by averaging the kth-order finite differences of functions fL2. On the basis of this, for differentiable functions in the classes L2r, r ∈ N, we refine the constants in Jackson-type inequalities containing the kth-order modulus of continuity ωk. For classes of functions defined by their smoothness characteristics Λk(f) and majorants Φ satisfying a number of conditions, we calculate the exact values of certain n-widths.  相似文献   

14.
Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n 1/2. We improve the best known upper bound and show f(n) = O (n 2/3). For higher dimensions, we show \(f_{d}(n)=\O \left (n^{\frac {d}{d + 1}}\right )\), where f d (n) is the largest integer such that every poset on n elements has a d-dimensional subposet on f d (n) elements.  相似文献   

15.
There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M → M of a compact smooth manifold of dimension at least 3: NF_n(f) = min{#Fix(g~n); g ~ f; g continuous} and NJD_n(f) = min{#Fix(g~n); g ~ f; g smooth}. In general, NJD_n(f) may be much greater than NF_n(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism,the equality NF_n(f) = NJD_n(f) holds for all n ? all eigenvalues of a quotient cohomology homomorphism induced by f have moduli 1.  相似文献   

16.
Let f:M~d→M~d(d≥2) be a diffeomorphism on a compact C~∞ manifold on M.If a diffeomorphism f belongs to the C~1-interior of the set of all diffeomorphisms having the barycenter property,then f is Ω-stable.Moreover,if a generic diffeomorphism f has the barycenter property,then f is Ω-stable.We also apply our results to volume preserving diffeomorphisms.  相似文献   

17.
In this paper we discuss the uniqueness problem for differential and difference polynomials of the form (f nm (z)f nd (qz + c))(k) for meromorphic functions in a non-Archimedean field.  相似文献   

18.
19.
For a Lebesgue integrable complex-valued function f defined over the n-dimensional torus \(\mathbb{T}^n \):= [0, 2π) n , let \(\hat f\)(k) denote the Fourier coefficient of f, where k = (k 1, … k n ) ∈ ? n . In this paper, defining the notion of bounded p-variation (p ≧ 1) for a function from [0, 2π] n to ? in two diffierent ways, the order of magnitude of Fourier coefficients of such functions is studied. As far as the order of magnitude is concerned, our results with p = 1 give the results of Móricz [5] and Fülöp and Móricz [3].  相似文献   

20.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号