首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let (M m , T) be a smooth involution on a closed smooth m-dimensional manifold and F = ∪ j=0 n F j (nm) its fixed point set, where F j denotes the union of those components of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967, establishes that, if F is nonbounding, then m ≤ 5/2n. In this paper we obtain an improvement of the Five Halves Theorem when the top dimensional component of F, F n , is nonbounding. Specifically, let ω = (i 1, i 2, …, i r ) be a non-dyadic partition of n and s ω (x 1, x 2, …, x n ) the smallest symmetric polynomial over Z 2 on degree one variables x 1, x 2, …, x n containing the monomial \(x_1^{i_1 } x_2^{i_2 } \cdots x_r^{i_r }\). Write s ω (F n ) ∈ H n (F n , Z 2) for the usual cohomology class corresponding to s ω (x 1, x 2, …, x n ), and denote by ?(F n ) the minimum length of a nondyadic partition ω with s ω (F n ) ≠ 0 (here, the length of ω = (i 1, i 2, …, i r ) is r). We will prove that, if (M m , T) is an involution for which the top dimensional component of the fixed point set, F n , is nonbounding, then m ≤ 2n + ?(F n ); roughly speaking, the bound for m depends on the degree of decomposability of the top dimensional component of the fixed point set. Further, we will give examples to show that this bound is best possible.  相似文献   

2.
Let s 1, ..., s n be arbitrary complex scalars. It is required to construct an n × n normal matrix A such that s i is an eigenvalue of the leading principal submatrix A i , i = 1, 2, ..., n. It is shown that, along with the obvious diagonal solution diag(s 1, ..., s n ), this problem always admits a much more interesting nondiagonal solution A. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix A i is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices A i and A i + 1.  相似文献   

3.
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant C n (s1, s2,…, s k ) C2n(s1, s2,…, s k , n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.  相似文献   

4.
Let (A,Λ) be a formring such that A is quasi-finite R-algebra (i.e., a direct limit of module finite algebras) with identity. We consider the hyperbolic Bak’s unitary groups GU(2n, A, Λ), n ≥ 3. For a form ideal (I, Γ) of the form ring (A, Λ) we denote by EU(2n, I, Γ) and GU(2n, I, Γ) the relative elementary group and the principal congruence subgroup of level (I, Γ), respectively. Now, let (I i , Γ i ), i = 0,...,m, be form ideals of the form ring (A, Λ). The main result of the present paper is the following multiple commutator formula: [EU(2n, I 0, Γ 0),GU(2n, I 1, Γ 1), GU(2n, I 2, Γ 2),..., GU(2n, I m , Γ m )] =[EU(2n, I 0, Γ 0), EU(2n, I 1, Γ 1), EU(2n, I 2, Γ 2),..., EU(2n, I m , Γ m )], which is a broad generalization of the standard commutator formulas. This result contains all previous results on commutator formulas for classicallike groups over commutative and finite-dimensional rings.  相似文献   

5.
Given a sequence A = (a 1, …, a n ) of real numbers, a block B of A is either a set B = {a i , a i+1, …, a j } where ij or the empty set. The size b of a block B is the sum of its elements. We show that when each a i ∈ [0, 1] and k is a positive integer, there is a partition of A into k blocks B 1, …, B k with |b i ?b j | ≤ 1 for every i, j. We extend this result in several directions.  相似文献   

6.
Let K be a differential field of zero characteristic with a basic set of derivations Δ = {δ 1, , δ m } and let Θ denote the free commutative semigroup of all elements of the form \( \theta = \delta_1^{{k_1}} \cdots \delta_m^{{k_m}} \) where k i ∈ ? (1 ≤ im). Let the order of such an element be defined as ord \( \theta = \sum\limits_{i = 1}^m {{k_i}} \), and for any r ∈ ?, let Θ(r) = {θ ∈ Θ | ord θr}. Let L = Kη 1, …, η s 〉 be a differential field extension of K generated by a finite set η = {η 1, …, η s } and let F be an intermediate differential field of the extension L/K. Furthermore, for any r ∈ ?, let \( {L_r} = K\left( {\bigcup\limits_{i = 1}^s {\Theta (r){\eta_i}} } \right) \) and F r = L r F. We prove the existence and describe some properties of a polynomial ? K,F,η (t) ∈ ?[t] such that ? K,F,η (r) = trdeg K F r for all sufficiently large r ∈ ?. This result implies the existence of a dimension polynomial that describes the strength of a system of differential equations with group action in the sense of A. Einstein. We shall also present a more general result, a theorem on a multivariate dimension polynomial associated with an intermediate differential field F and partitions of the basic set Δ.  相似文献   

7.
A non-empty subset A of X=X 1×???×X d is a (proper) box if A=A 1×???×A d and A i ?X i for each i. Suppose that for each pair of boxes A, B and each i, one can only know which of the three states takes place: A i =B i , A i =X i ?B i , A i ?{B i ,X i ?B i }. Let F and G be two systems of disjoint boxes. Can one decide whether ∪F=∪G? In general, the answer is ‘no’, but as is shown in the paper, it is ‘yes’ if both systems consist of pairwise dichotomous boxes. (Boxes A, B are dichotomous if there is i such that A i =X i ?B i .) Several criteria that enable to compare such systems are collected. The paper includes also rigidity results, which say what assumptions have to be imposed on F to ensure that ∪F=∪G implies F=G. As an application, the rigidity conjecture for 2-extremal cube tilings of Lagarias and Shor is verified.  相似文献   

8.
Let α be an automorphism of a finite group G. For a positive integer n, let E G,n (α) be the subgroup generated by all commutators [...[[x,α],α],…,α] in the semidirect product G 〈α〉 over xG, where α is repeated n times. By Baer’s theorem, if E G,n (α)=1, then the commutator subgroup [G,α] is nilpotent. We generalize this theorem in terms of certain length parameters of E G,n (α). For soluble G we prove that if, for some n, the Fitting height of E G,n (α) is equal to k, then the Fitting height of [G,α] is at most k + 1. For nonsoluble G the results are in terms of the nonsoluble length and generalized Fitting height. The generalized Fitting height h*(H) of a finite group H is the least number h such that F h* (H) = H, where F 0* (H) = 1, and F i+1* (H) is the inverse image of the generalized Fitting subgroup F*(H/F i *(H)). Let m be the number of prime factors of the order |α| counting multiplicities. It is proved that if, for some n, the generalized Fitting height E G,n (α) of is equal to k, then the generalized Fitting height of [G,α] is bounded in terms of k and m. The nonsoluble length λ(H) of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if λE G,n (α)= k, then the nonsoluble length of [G,α] is bounded in terms of k and m. We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.  相似文献   

9.
Motivated by a question of Sárközy, we study the gaps in the product sequence B = A · A = {b 1 < b 2 < …} of all products a i a j with a i , a j A when A has upper Banach density α > 0. We prove that there are infinitely many gaps b n+1 ? b n ? α ?3 and that for t ≥ 2 there are infinitely many t-gaps b n+t ? b n ? t 2 α ?4. Furthermore, we prove that these estimates are best possible.We also discuss a related question about the cardinality of the quotient set A/A = {a i /a j , a i , a j A} when A ? {1, …, N} and |A| = αN.  相似文献   

10.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

11.
The class A of anabelian groups is defined as the collection of finite groups without abelian composition factors. We prove that the commutator word [x1, x2] and the power word x1p have bounded width in A when p is an odd integer. By contrast, the word x30 does not have bounded width in A. On the other hand, any given word w has bounded width for those groups GA whose composition factors are sufficiently large as a function of w. In the course of the proof we establish that sufficiently large almost simple groups cannot satisfy w as a coset identity.  相似文献   

12.
In this paper a class of correlated cumulative processes, B s (t) = ∑N(t)i=1 H s (X i )X i , is studied with excess level increments X i ?s, where {N(t), t ?0} is the counting process generated by the renewal sequence T n , T n and X n are correlated for given n, H s (t) is the Heaviside function and s?0 is a given constant. Several useful results, for the distributions of B s (t), and that of the number of excess (non-excess) increments on (0, t) and the corresponding means, are derived. First passage time problems are also discussed and various asymptotic properties of the processes are obtained. Transform results, by applying a flexible form for the joint distribution of correlated pairs (T n , X n ) are derived and inverted. The case of non-excess level increments, X i < s, is also considered. Finally, applications to known stochastic shock and pro-rata warranty models are given.  相似文献   

13.
14.
We consider a sequence of convex integral functionals Fs: W1,ps) → ? and a sequence of weakly lower semicontinuous and generally nonintegral functionals Gs: W1,ps) → ?, where {Ωs} is a sequence of domains in ?n contained in a bounded domain Ω ? ?n (n ≥ 2) and p > 1. Along with this, we consider a sequence of closed convex sets Vs = {vW1,ps): vKs(v) a.e. in Ωs}, where Ks is a mapping from the space W1,ps) to the set of all functions defined on Ωs. We establish conditions under which minimizers and minimum values of the functionals Fs + Gs on the sets Vs converge to a minimizer and the minimum value of a functional on the set V = {vW1,p(Ω): vK(v) a.e. in Ω}, where K is a mapping from the space W1,p(Ω) to the set of all functions defined on Ω. These conditions include, in particular, the strong connectedness of the spaces W1,ps) with the space W1,p(Ω), the condition of exhaustion of the domain Ω by the domains Ωs, the Γ-convergence of the sequence {Fs} to a functional F: W1,p(Ω) → ?, and a certain convergence of the sequence {Gs} to a functional G: W1,p(Ω) → ?. We also assume some conditions characterizing both the internal properties of the mappings Ks and their relation to the mapping K. In particular, these conditions admit the study of variational problems with irregular varying unilateral obstacles and with varying constraints combining the pointwise dependence and the functional dependence of the integral form.  相似文献   

15.
Results on extrapolation withA∞ weights in grand Lebesgue spaces are obtained. Generally, these spaces are defined with respect to the productmeasure μ1 ×· · ·×μn onX1 ×· · ·×Xn, where (Xi, di, μi), i = 1,..., n, are spaces of homogeneous type. As applications of the obtained results, new one-weight estimates with A weights for operators of harmonic analysis are derived.  相似文献   

16.
The split graph K rVK s on r+s vertices is denoted by S r,s. A graphic sequence π = (d 1, d 2, ···, d n) is said to be potentially S r,s-graphic if there is a realization of π containing S r,s as a subgraph. In this paper, a simple sufficient condition for π to be potentially S r,s-graphic is obtained, which extends an analogous condition for p to be potentially K r+1-graphic due to Yin and Li (Discrete Math. 301 (2005) 218–227). As an application of this condition, we further determine the values of σ(S r,s, n) for n ≥ 3r + 3s - 1.  相似文献   

17.
For a finite group G denote by N(G) the set of conjugacy class sizes of G. In 1980s, J.G.Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N(G) = N(L), then G ? L. We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z(G) = 1 and N(G) = N(A i ) is necessarily isomorphic to A i , where i ∈ {2p, 2p + 1}.  相似文献   

18.
An IP system is a functionn taking finite subsets ofN to a commutative, additive group Ω satisfyingn(α∪β)=n(α)+n(β) whenever α∩β=ø. In an extension of their Szemerédi theorem for finitely many commuting measure preserving transformations, Furstenberg and Katznelson showed that ifS i ,1≤i≤k, are IP systems into a commutative (possibly infinitely generated) group Ω of measure preserving transformations of a probability space (X, B, μ, andAB with μ(A)>0, then for some ø≠α one has μ(? i=1 k S i({α})A>0). We extend this to so-called FVIP systems, which are polynomial analogs of IP systems, thereby generalizing as well joint work by the author and V. Bergelson concerning special FVIP systems of the formS(α)=T(p(n(α))), wherep:Z t Z d is a polynomial vanishing at zero,T is a measure preservingZ d action andn is an IP system intoZ t . The primary novelty here is potential infinite generation of the underlying group action, however there are new applications inZ d as well, for example multiple recurrence along a wide class ofgeneralized polynomials (very roughly, functions built out of regular polynomials by iterated use of the greatest integer function).  相似文献   

19.
Consider the n×n matrix with (i, j)’th entry gcd (i, j). Its largest eigenvalue λn and sum of entries sn satisfy λn > sn/n. Because sn cannot be expressed algebraically as a function of n, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S.Hong, R.Loewy (2004). We also conjecture that λn > 6π?2nlogn for all n. If n is large enough, this follows from F.Balatoni (1969).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号