首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable Λ and G and bulk viscosity have been considered. We discuss three types of average scale factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity (ξ), cosmological constant (Λ), gravitational parameter (G) and deceleration parameter (q) for different equations of state. The model describes an accelerating Universe for large value of time t, wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.  相似文献   

2.
In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f(R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor \(a(t)= [sinh(\alpha t)]^{\frac {1}{n}}\), α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter (ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.  相似文献   

3.
We introduce a new cosmological diagnostic pair {r, s} called the Statefinder. The Statefinder is a geometrical diagnostic and allows us to characterize the properties of dark energy in a model-independent manner. The Statefinder is dimensionless and is constructed from the scale factor of the Universe and its time derivatives only. The parameter r forms the next step in the hierarchy of geometrical cosmological parameters after the Hubble parameter H and the deceleration parameter q, while a is a linear combination of q and r chosen in such a way that it does not depend upon the dark energy density. The Statefinder pair {r, s} is algebraically related to the equation of state of dark energy and its first time derivative. The Statefinder pair is calculated for a number of existing models of dark energy having both constant and variable w. For the case of a cosmological constant, the Statefinder acquires a particularly simple form. We demonstrate that the Statefinder diagnostic can effectively differentiate between different forms of dark energy. We also show that the mean Statefinder pair can be determined to very high accuracy from a SNAP-type experiment.  相似文献   

4.
A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter (ω Λ), deceleration parameter (q) and squared speed of sound \({v_{s}^{2}}\)) and planes (\(\omega _{\Lambda }-\dot {\omega }_{\Lambda }\) and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter (β) and cosmic time (t).  相似文献   

5.
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.  相似文献   

6.
P Thakur 《Pramana》2017,88(3):51
Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matter energy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter (H 0 t 0) and (ii) the observed Hubble (H(z)?z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwave background (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters H 0, A s and α (A s and α are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD + BAO + CMB + Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe (t 0) and the present Hubble parameter (H 0) have been estimated with 1σ confidence level. Best-fit values of deceleration parameter (q), squared sound speed (\(c_{\mathrm {s}}^{2}\)) and EoS parameter (ω) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.  相似文献   

7.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

8.
We reconsider the holographic dark energy (HDE) model with a slowly time varying c 2(z) parameter in the energy density, namely \(\rho _{D}=3{M_{p}^{2}} c^{2}(z)/L^{2}\), where L is the IR cutoff and z is the redshift parameter. As the system’s IR cutoff we choose the Hubble radius and the Granda-Oliveros (GO) cutoffs. The latter inspired by the Ricci scalar curvature. We derive the evolution of the cosmological parameters such as the equation of state and the deceleration parameters as the explicit functions of the redshift parameter z. Then, we plot the evolutions of these cosmological parameters in terms of the redshift parameter during the history of the universe. Interestingly enough, we observe that by choosing L = H ?1 as the IR cutoff for the HDE with time varying c 2(z) term, the present acceleration of the universe expansion can be achieved, even in the absence of interaction between dark energy and dark matter. This is in contrast to the usual HDE model with constant c 2 term, which leads to a wrong equation of state, namely that for dust w D =0, when the IR cutoff is chosen the Hubble radius.  相似文献   

9.
We explore the cosmological implications of the interactions among the dark particles in the dark SU(2) R model. It turns out that the relevant interaction is between dark energy and dark matter, through a decay process. With respect to the standard ΛCDM model, it changes only the background equations. We note that the observational aspects of the model are dominated by degeneracies between the parameters that describe the process. Thus, only the usual Λ CDM parameters such as the Hubble expansion rate and the dark energy density parameter (interpreted as the combination of the densities of the dark energy doublet) could be constrained by observations at this moment.  相似文献   

10.
In this paper, we have studied the anisotropic and homogeneous Bianchi type-VI 0 Universe filled with dark matter and holographic dark energy components in the framework of general relativity and Lyra’s geometry. The Einstein’s field equations have been solved exactly by taking the expansion scalar (??) in the model is proportional to the shear scalar (σ). Some physical and kinematical properties of the models are also discussed.  相似文献   

11.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order \({\Lambda }^{3}_{QCD}\) and Λ Q C D ~ 100M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed \({v_{s}^{2}}\) the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.  相似文献   

12.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

13.
In this work, we consider a non-flat universe filled with Fermionic field. First, we have considered the holographic dark energy and new agegraphic dark energy in the framework of F-essence cosmology and investigated the consequences for their co-existence. The correspondence of F-essence with the above types of dark energy models have been investigated. The natures of K and Y for these correspondence of F-essence with the above dark energies have been analyzed.  相似文献   

14.
The Sandage-Loeb(SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-α forest of distant quasars, covering the "redshift desert" of 2 z 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy(HDE) model and the Ricci holographic dark energy(RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density ?_(m0) and the Hubble constant H0 in other cosmological observations. For the considered two typical dark energy models, not only can a30-year observation of SL test improve the constraint precision of ?_(m0) and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.  相似文献   

15.
The exact solutions of the field equations with respect to hypersurface-homogeneous Universe filled with perfect fluid in the framework of f(R, T) theory of gravity (Harko et al, Phys. Rev. D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.  相似文献   

16.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

17.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

18.
In this paper, we have considered flat Friedmann–Lemaître–Robertson–Walker metric in the framework of perfect fluid models and modified f(G) gravity (where G is the Gauss Bonnet invariant). Particularly, we have considered particular realistic f(G) configurations that could be used to cure finite-time future singularities arising in the late-time cosmic accelerating epochs. We have then developed the viability bounds of these models induced by weak and null energy conditions, by using the recent estimated numerical figures of the deceleration, Hubble, snap and jerk parameters.  相似文献   

19.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

20.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号