首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.  相似文献   

2.
The aim of this work is to study the effect of barium (Ba) doping on the optical, morphological and structural properties of ZnO nanoparticles. Undoped and Ba-doped ZnO have been successfully synthesized via sonochemical method using zinc nitrate, hexamethylenetetramine (HMT) and barium chloride as starting materials. The structural characterization by XRD and FTIR shows that ZnO nanoparticles are polycrystalline with a standard hexagonal ZnO wurtzite crystal structure. Decrease in lattice parameters from diffraction data shows the presence of Ba2+ in the ZnO crystal lattice. The morphology of the ZnO nanoparticles has been determined by scanning electron microscopy (SEM). Incorporation of Ba was confirmed from the elemental analysis using EDX. Optical analysis depicted that all samples exhibit an average optical transparency over 80%, in the visible range. Room-temperature photoluminescence (PL) spectra detected a strong ultraviolet emission at 330 nm and two weak emission bands were observed near 417 and 560 nm. Raman spectroscopy analysis of Ba-doped samples reveals the successful doping of Ba ions in the host ZnO.  相似文献   

3.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased.  相似文献   

4.
Room-temperature multiferroic properties in Mg-doped ZnO samples are reported wherein Mg replaces Zn in the ZnO matrix and retains hexagonal wurtzite structure. The saturation magnetisation is increased from ~2×10?4 emu/g to 3×10?4 emu/g for the dilute doping of 2 % Mg in pure ZnO and the ferroelectricity is also increased. Higher concentration of Mg does not lead to a significant enhancement in the magnetisation but improves the ferroelectric properties. An X-ray absorption spectroscopic study shows an enhancement in O vacancies with dilute doping of Mg. The origin of the multiferroic behaviour is understood based on their crystal and electronic structures.  相似文献   

5.
This paper investigates the structural, compositional and magnetic properties of vanadium doped ZnO bulk samples prepared by solid state reaction technique. The Rietveld refinement analysis for XRD results of samples showed small change in lattice parameters for 3 and 5% vanadium doped ZnO samples indicating the substitution of Zn2+ ions by vanadium ions in ZnO lattice. Raman spectroscopy reveals the change in ZnO modes positions due to vanadium doping. The appearance of E1 and E2 modes showed that the wurtzite structure of ZnO is still maintained after doping of vanadium oxide. XPS analysis confirms the presence of the different elements and oxidation states of vanadium ions. M-H curves obtained from VSM showed weak ferromagnetism in the samples. The observation of ferromagnetic behavior indicates the formation of ZnVO phase with V2+ ion substitution in the ZnO lattice. XPS scans of the etched bulk samples confirmed the 2+ oxidation state of vanadium ions in our samples explaining the origin of ferromagnetism.  相似文献   

6.
ZnO nanopowders simultaneously doped with fluorine (20 at.%) and magnesium (4, 8, 12 and 16 at.%) (ZnO:F:Mg) have been synthesized using an inexpensive simple soft chemical route for the first time. The effect of Mg doping level on certain physical properties and antibacterial activities of ZnO:F:Mg nanopowders has been investigated and reported. XRD studies showed that the products have the hexagonal wurtzite structure of ZnO. Fourier transform infrared spectra authenticate the presence of MgO stretching vibration, which is responsible for the increased antibacterial activity of the synthesized samples. The antibacterial activity of ZnO:F:Mg nanopowders was found to be enhanced with increase in Mg doping level as it causes a reduction in the grain size.  相似文献   

7.
The ZnO:Ni2+ nanoparticles of mean size 2-12 nm were synthesized at room temperature by the simple co-precipitation method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Ni doping concentration and an additional NiO-associated diffraction peak was observed above 15% of Ni2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Ni2+ doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially, these nanoparticles showed strong ferromagnetic behavior, however, at higher doping percentage of Ni2+, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Ni-Ni ions suppressed the ferromagnetism at higher doping concentrations of Ni2+.  相似文献   

8.
In this work, the effect of Mg doping on the performance of PbS quantum dot (QD) solar cells (QDSCs) is investigated. To elucidate that, PbS QDSCs with pristine ZnO and Mg-doped ZnO (ZMO) as electron transporting layers (ETLs) are fabricated, respectively. The current density-voltage (J-V) measurements are performed. The results show that the cell efficiency of the device with ZMO as an ETL is 9.46%, which increases about 75% compared to that of the pristine ZnO based device (5.41%). Enhanced short current density (Jsc) and fill factor (FF) are observed. It is demonstrated that Mg doping could passivate the surface defects and suppress the carrier recombination in ZnO ETL, thus resulting in larger bandgap and higher Fermi level (EF). The strategy of Mg-doped ZnO ETL provides a promising way for pushing solar cell performance to a high level.  相似文献   

9.
The ZnO:Fe nanoparticles of mean size 3-10 nm were synthesized at room temperature by simple co-precipitation method. The crystallite structure, morphology and size estimation were performed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Fe doping concentration. The magnetic behavior of the nanoparticles of ZnO with varying Fe doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong ferromagnetic behavior, however at higher doping percentage of Fe, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Fe-Fe ions suppressed the ferromagnetism at higher doping concentrations of Fe. Room-temperature Mössbauer spectroscopy investigation showed Fe3+ nature of the iron atom in ZnO matrix.  相似文献   

10.
Zn1−xCoxO nanocrystals with nominal Co doping concentrations of x = 0–0.1 were synthesized through a simple solution route followed by a calcining process. The doping effects on the structural, morphological and optical properties were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman, absorption and luminescence spectroscopy. The results indicated that a small amount of Co ions were incorporated into ZnO lattice structure, whereas the secondary phase of Co3O4 was segregated and precipitated at high Co doping concentrations, the solid solubility of Co ions in ZnO nanocrystals could be lower than 0.05. The spectra related to transitions within the tetrahedral Co2+ ions in the ZnO host crystal were observed in absorption and luminescence spectra.  相似文献   

11.
Mg-doped SnS2 nanoflowers were synthesized by hydrothermal method. The XRD and absorption spectra analyses reveal that the incorporated Mg atoms substitute for Sn atoms in SnS2 lattice and red-shift the band-gap at low doping concentration (≤4 at%). With further doping, a transformation of Mg atoms from substitutional sites to interstitial sites occurs. The ferromagnetism of SnS2 nanoflowers is enhanced non-monotonously with Mg doping and the largest saturation magnetization of 2.11×10−3 emu/g appears in 4 at% Mg-doped SnS2. The holes created by Mg substituted incorporation may be the origin of the ferromagnetism. On the other hand, interstitial Mg atoms play a negative role in enhancing the ferromagnetism due to the holes compensation effect.  相似文献   

12.
采用共沉淀(co-precipitation)法制备了Mg掺杂ZnO纳米晶,分别用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、紫外可见吸收(UV-Vis)光谱、光致发光(PL)光谱、透射电镜(TEM)、电子顺磁共振(EPR)等分析手段对样品进行了表征。探究了Mg离子在ZnO纳米晶中的存在状态,ZnO纳米晶颗粒尺寸和发射光谱随Mg掺杂浓度的变化,并对其发光机理进行了分析。结果表明:Mg离子在ZnO晶格中以部分晶格位,部分间隙位的方式存在,没有形成MgO表面壳层结构;随Mg掺杂浓度的增大,ZnO纳米晶的颗粒尺寸变小,发射光的光强增大。发射光的最佳激发波长为342nm,中心波长为500nm,荧光量子产率为22.8%。实验分析表明:Mg离子的掺杂在ZnO纳米晶中引入了锌空位(VZn),间隙位的镁离子(IMg),提供了新的复合中心,从而增强了ZnO纳米晶的光致发光。  相似文献   

13.
In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol–gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E2lowE_{2}^{\mathrm{low}} and E2HighE_{2}^{\mathrm{High}} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm−1 which is specific to E 1 (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures.  相似文献   

14.
Structural and optical properties of 1 at % Al-doped Zn1−xMgxO (x=0–8%) powders prepared by sol–gel method were systematically investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible absorbance measurement, photoluminescence and Raman scattering spectra. All the powders retained the hexagonal wurtzite structure of ZnO. The band gap and near band emission energies determined from absorbance and photoluminescence spectra increased linearly with increasing Mg content, respectively, which implied that the Mg worked effectively on ZnO band gap engineering, irrespective of Al codoping. However, according to the PL and Raman scattering studies, for the sample of x=8%, the Al doping efficiency was decreased by higher Mg codoping. On the other hand, the effect of Mg codoping on photocatalytic degradation of methylene orange was explored experimentally. The substitution of Mg ions at Zn sites shifted the conduction band toward higher energies and then enhanced the photocatalytic activity, while the incorporation of interstitial Mg ions and decreased Al doping efficiency for higher Mg doping sample (x=8%) reduced the photocatalytic activity.  相似文献   

15.
To elucidate the origin of antibacterial activity of ZnO nanoparticles, a reactive oxygen species (ROS) mechanism is systematically investigated based on electronic and protonic conductions. While the enhancement of antibacterial activity by an increase in electronic conductivity is marginal, an apparent improvement is observed by in the increase of protonic conductivity in terms of the surface basicity. This study first demonstrates that antibacterial activity can be enhanced by controlling the surface basicity of solid particles. The basicity of ZnO can be modulated by doping alkaline‐earth oxides such as MgO and CaO, and it results in the increase of hydroxyl defects on the surface of solid particles. The basicity shows a strong dependency on mobile OH concentrations. The increase of ROS hydroxyl radicals is confirmed by Mg (ZMO) or Ca‐doping (ZCO), which shows high antibacterial activity, and Ca‐doped ZnO exhibits the highest performance. It is clearly observed that the antibacterial activity is proportional to the basicity, which is controlled by the mobile OH formation. While both electrons and hydroxyl species are required for ROS reactions, it is concluded that the formation of hydroxyl species is a key factor in improving the antibacterial activity in ZnO.  相似文献   

16.
利用火焰喷雾法成功制备了纳米级的ZnO和MgxZn1-xO颗粒. 通过对样品的X射线衍射谱和场发射扫描电子显微镜照片分析,发现制备的颗粒大小较为均匀,直径在20nm左右;镁元素的掺入引起晶格常数变小. 通过透射光谱和光致发光谱的测量,发现MgxZn1-xO颗粒的禁带宽度远大于ZnO颗粒的禁带宽度,同时对两组样品的紫外发光和可见发光的强度变化和发光机理进行了探讨. 关键词: 火焰喷雾 ZnO 禁带宽度 纳米颗粒  相似文献   

17.
Copper doped ZnO nanoparticles were synthesized by the chemical technique based on the hydrothermal method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) for different doping percentages of Cu2+ (1-10%). TEM/SEM images showed formation of uniform nanorods, the aspect ratio of which varied with doping percentage of Cu2+. The wurtzite structure of ZnO gradually degrades with the increasing Cu2+ doping concentration and an additional CuO associated diffraction peak was observed above 8% of Cu2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Cu2+ doping concentrations was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong room-temperature ferromagnetic behavior, however at higher doping percentage of copper the ferromagnetic behavior was suppressed and paramagnetic nature was enhanced.  相似文献   

18.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

19.
Pure ZnO and Mn-doped ZnO nanoparticles were synthesized by Co-precipitate method. The structural characterizations of the nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. UV–Vis, FTIR and photoluminescence (PL) spectroscopy were used for analysing the optical properties of the nanoparticles. XRD results revealed the formation of ZnO and Mn-doped ZnO nanoparticles with wurtzite crystal structure having average crystalline size of 39 and 20 nm. From UV–Vis studies, the optical band-gap energy of 3.20 and 3.25 eV was obtained for ZnO and Mn-doped ZnO nanoparticles, respectively. FTIR spectra confirm the presence of ZnO and Mn-doped ZnO nanoparticles. Photoluminescence analysis of all samples showed four main emission bands: a strong UV emission band, a weak blue band, a weak blue–green band and a weak green band indicating their high structural and optical qualities. The antibacterial efficiency of ZnO and Mn-doped ZnO nanoparticles were studied using disc diffusion method. The Mn-doped ZnO nanoparticles show better antibacterial activity when higher doping level is 10 at% and has longer duration of time.  相似文献   

20.
以醋酸锌、氧化铕、氢氧化钠为主要原材料,利用共沉淀法制备ZnO∶Eu3+纳米晶体.在X射线衍射谱中,只观察到氧化锌的峰,没有观察到氧化铕的特征峰.比较了ZnO和ZnO∶Eu3+拉曼光谱,在ZnO∶Eu3+样品拉曼光谱中观察到新的局部振动模.这些现象表明铕离子已经进入氧化锌晶格中.SEM形貌显示Eu3+离子掺入使ZnO晶...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号