首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Singh  SM Sieburth 《Organic letters》2012,14(17):4422-4425
Silanediol peptidomimetics are demonstrated to inhibit a serine protease. Asymmetric synthesis of the inhibitor was accomplished using Brown hydroboration and CBS reduction of an acylsilane intermediate. The silanediol product was found to inhibit the serine protease chymotrypsin with a K(i) of 107 nM. Inhibition of the enzyme may involve exchange of a silane hydroxyl with the active site serine nucleophile, contrasting with previous silanediol protease inhibitors.  相似文献   

2.
Four stereoisomers of a Phe-Ala silanediol dipeptide mimic have been evaluated as inhibitors of angiotensin-converting enzyme (ACE) and compared to ketone-based inhibitors reported by Almquist et al. One stereogenic center of the isomers was derived from the individual enantiomers of methyl 3-hydroxy-2-methylpropionate, with separation of diastereomers after introduction of the second stereogenic center. The diastereomeric identities were established by X-ray crystallography of an intermediate. Inhibition of ACE by three of the silanediol diastereomers (IC(50) = 3.8-207 nM) closely paralleled that of the corresponding diastereomeric ketones (IC(50) = 1.0-46 nM). The fourth diastereomer, corresponding to the least inhibitory ketone (IC(50) = 3200 nM), exhibited an unexpected level of inhibition in the silanediol (IC(50) = 72 nM), suggesting an alternative mode of binding to the enzyme.  相似文献   

3.
BACKGROUND: Silicon is the element most similar to carbon, and bioactive organosilanes have therefore been of longstanding interest. Design of bioactive organosilanes has often involved a systematic replacement of a bioactive molecule's stable carbon atoms with silicon. Silanediols, which are best known as unstable precursors of the robust and ubiquitous silicone polymers, have the potential to mimic an unstable carbon, the hydrated carbonyl. As a bioisostere of the tetrahedral intermediate of amide hydrolysis, a silanediol could act as a transition state analog inhibitor of protease enzymes. RESULTS: Silanediol analogs of a carbinol-based inhibitor of the HIV protease were prepared as single enantiomers, with up to six stereogenic centers. As inhibitors of this aspartic protease, the silanediols were nearly equivalent to both their carbinol analogs and indinavir, a current treatment for AIDS, with low nanomolar K(i) values. IC(90) data from a cell culture assay mirrored the K(i) data, demonstrating that the silanediols can also cross cell membranes and deliver their antiviral effects. CONCLUSIONS: In their first evaluation as inhibitors of an aspartic protease, silanediol peptidomimetics have been found to be nearly as potent as currently available pharmaceutical agents, in enzyme and cell protection assays. These neutral, cell-permeable transition state analogs therefore provide a novel foundation for the design of therapeutic agents.  相似文献   

4.
A solid phase combinatorial library of 165,000 phosphinic peptide inhibitors was prepared and screened for activity against MMP-12. The inhibitors of the library had the structure XXX-Gpsi(PO2H-CH2)L-XXX, in which X is an arbitrary amino acid and Gpsi(PO2H-CH2)L is a Gly-Leu phosphinic dipeptide analogue. The library was constructed as a one-bead-two-compounds library so that every bead contained a common quenched fluorogenic substrate and a different putative inhibitor. In addition, the inhibitor part was prepared by ladder synthesis. After incubation with MMP-12, beads containing active inhibitors were selected, and the inhibitor sequences were recorded using MALDI-TOF MS. Statistical analysis of the sequences obtained from 86 beads gave rise to a consensus sequence which was resynthesized along with 20 related sequences. Three truncated sequences and 16 sequences originally present on beads were also resynthesized. The inhibitors were investigated in an enzyme kinetic assay with MMP-12 showing that the compounds derived from the consensus sequence were strong inhibitors with Ki values down to 6 nM, whereas the sequences originally present on beads varied in potency with Ki values from micromolar to nanomolar. Truncated sequences derived from the consensus sequence were poor inhibitors of MMP-12.  相似文献   

5.
The solution-phase synthesis and resolution of new phosphinopeptidic building blocks containing a triple bond was realized in high yields and optical purities (units 3 a-d). The absolute configuration of the target compounds was unambiguously established by NMR studies. A post-assembly diversification strategy of these blocks was developed through 1,3-dipolar cycloaddition of a variety of in situ prepared nitrile oxides. This strategy led to the rapid and efficient diastereoselective preparation of a novel class of isoxazole-containing phosphinic peptides (peptides 5 a-i). Solid-phase version of this strategy was efficiently achieved on multipin solid technology, by developing a new protocol for the coupling of P-unprotected dipeptidic blocks with solid supported amino acids in a quantitative and diastereoselective manner. Optimization of dipolar cycloadditions onto pin-embodied phosphinic peptides allowed the convenient preparation of this new class of pseudopeptides. The crude phosphinic peptides (9 a-k) were obtained in high yields and purity as determined by RP-HPLC. Inhibition assays of some of these peptides revealed that they behave as very potent inhibitors of MMPs, outmatching previously reported phosphinic peptides, in terms of potency (K(i) in the range of few nM).  相似文献   

6.
Silanols are best known as unstable precursors of siloxane (silicone) polymers, substances generally considered stable and inert, but have the potential to mimic a hydrated carbonyl and inhibit protease enzymes. While previous testing of simple silanediol and silanetriol species as inhibitors of hydrolase enzymes found them ineffective, this study reports polypeptide mimics with a central methylsilanol [SiMeOH] or silanediol [Si(OH)(2)] group and their assessment as effective transition state analogue inhibitors of the well-studied metalloprotease angiotensin-converting enzyme (ACE). Central to the synthesis strategy, phenylsilanes were employed as acid-hydrolyzable precursors of the silanol group. The N-benzoyl Leu-[SiMeOH]-Gly benzyl amides proved to be stable and readily characterized. In contrast, the Leu-[Si(OH)(2)]-Gly structure was difficult to characterize, possibly because of self-association. Capping the silanediol with chlorotrimethylsilane gave a well-defined trisiloxane, demonstrating that the silanediol was monomeric. The Leu-[Si]-Gly structures were converted to Leu-[Si]-Ala analogues by enolate alkylation. Coupling of the silanol precursors with proline tert-butyl ester gave N-benzoyl Leu-[Si]-Gly-Pro and N-benzoyl Leu-[Si]-Ala-Pro tripeptide analogues. Treatment of these with triflic acid formed the corresponding methylsilanols and silanediols, all of which were monomeric. The silanediol tripeptide mimics inhibited ACE with IC(50) values as low as 14 nM. Methylsilanols, in contrast, were poor inhibitors, with IC(50) values above 3000 nM. These data, including comparisons with inhibition data from carbon analogues, are consistent with binding of the silanediols by chelation of the ACE active site zinc, whereas the methylsilanols ligate poorly.  相似文献   

7.
An amino acid carrying a 1-(4-dihydroxymethylsilyl)butyl side chain has been prepared in enantiomerically pure form as a potential inhibitor of the enzyme arginase, a pharmaceutical target. As a water-soluble silanediol, this compound was anticipated to be entropically stabilized against polymerization and siloxane formation. At 50 mM in D(2)O, the degree of oligomerization was found to be pH dependent, with diastereomeric mixtures formed on condensation. Above pH 11 the silane is largely monomeric.  相似文献   

8.
Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor with this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based upon the -bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and antiviral activities. Inhibitor (K(i) = 0.11 nM; IC(50) = 3.8 nM) displayed very potent antiviral activity in this series. While inhibitor showed comparable enzyme inhibitory activity (K(i) = 0.18 nM) its antiviral activity (IC(50) = 170 nM) was significantly weaker than inhibitor . Inhibitor maintained an antiviral potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A protein-ligand X-ray structure of -bound HIV-1 protease revealed a number of key hydrogen bonding interactions at the S2-subsite. We have created an active model of inhibitor based upon this X-ray structure.  相似文献   

9.
A series of monocyclic glycoamidines bearing different exocyclic amine, alcohol, or alkyl functionalities and bicyclic amidines derived from D-glucose and D-mannose were synthesized and tested as inhibitors of various glycosidases. All the prepared compounds demonstrated good to excellent inhibition toward glycosidases. In particular, the biscationic D-mannoamidine 9b bearing an exocyclic ethylamine moiety proved to be a selective competitive inhibitor of alpha- and beta-mannosidases (K(i) = 6 nM) making it the most potent inhibitor of these glycosidases reported to date. A favorable B(2,5) boat conformation might explain the selectivity of mannosidase inhibition compared to other glycosidases.  相似文献   

10.
Lipoxygenases catalyse the oxidation of polyunsaturated fatty acids and have been invoked in many diseases including cancer, atherosclerosis and Alzheimer's disease. Currently, no X-ray structures are available with substrate or substrate analogues bound in a productive conformation. Such structures would be very useful for examining interactions between substrate and active site residues. Reported here are the syntheses of linoleic acid analogues containing a sulfur atom at the 11 or 14 positions. The key steps in the syntheses were the incorporation of sulfur using nucleophilic attack of metallated alkynes on electrophilic sulfur compounds and the subsequent stereospecific tantalum-mediated reduction of the alkynylsulfide to the cis-alkenylsulfide. Kinetic assays performed with soybean lipoxygenase-1 showed that both 11-thialinoleic acid and 14-thialinoleic acid were competitive inhibitors with respect to linoleic acid with K(i) values of 22 and 35 microM, respectively. On the other hand, 11-thialinoleic acid was a noncompetitive inhibitor with respect to arachidonic acid with K(is) and K(ii) values of 48 and 36 microM, respectively. 11-Thialinoleic acid was also a noncompetitive inhibitor of human 15-lipoxygenase-1 with arachidonic acid (K(is) = 11.4 microM, K(ii) = 18.1 microM) or linoleic acid as substrate (K(is) = 20.1 microM, K(ii) = 20.0 microM), and a competitive inhibitor of human 12-lipoxygenase with arachidonic acid as substrate (K(i) = 2.5 microM). The presence of inhibitor did not change the regioselectivity of soybean lipoxygenase-1, human 12- or 15-lipoxygenase-1.  相似文献   

11.
[structure: see text] The synthesis of N-acylsulfonamide 6, which is an analogue of beta-aspartyl-AMP, is described. This compound appears to be the first and only potent inhibitor of human asparagine synthetase that has been described to date. The N-acylsulfonamide 6 exhibits slow-onset inhibition kinetics, with a K(i) of 728 nM. Preparation and characterization of two additional N-acylsulfonamide analogues has also demonstrated the importance of hydrogen-bonding interactions in the recognition of the AS inhibitor with the enzyme. These observations provide the basis for the discovery of new compounds with application in the treatment of drug-resistant leukemia.  相似文献   

12.
Three phosphinic acid 1,4,7-triazacyclononane (TACN) derivatives bearing methylphosphinic (TRAP-H), methyl(phenyl)phosphinic (TRAP-Ph), or methyl(hydroxymethyl)phosphinic acid (TRAP-OH) pendant arms were investigated as members of a new family of efficient Ga(3+) chelators, TRAP ligands (triazacyclononane phosphinic acids). Stepwise protonation constants of ligands and stability constants of their complexes with Ga(3+), selected divalent metal, and Ln(3+) ions were determined by potentiometry. For comparison, equilibrium data for the metal ion-NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) systems were redetermined. These ligands exhibit high thermodynamic selectivity for Ga(3+) over the other metal ions (log K(GaL) - log K(ML) = 7-9) and a selective complexation of smaller Mg(2+) over Ca(2+). Stabilities of the Ga(3+) complexes are dependent on the basicity of the donor atoms: [Ga(NOTA)] (log K(GaL) = 29.6) > [Ga(TRAP-OH)] (log K(GaL) = 23.3) > [Ga(TRAP-H)] (log K(GaL) = 21.9). The [Ga(TRAP-OH)] complex exhibits unusual reversible rearrangement of the "in-cage" N(3)O(3) complex to the "out-of-cage" O(6) complex. The in-cage complex is present in acidic solutions, and at neutral pH, Ga(3+) ion binds hydroxide anion, induces deprotonation and coordination of the P-hydroxymethyl group(s), and moves out of the macrocyclic cavity; the hypothesis is supported by a combination of results from potentiometry, multinuclear nuclear magnetic resonance spectrometry, and density functional theory calculations. Isomerism of the phosphinate Ga(3+) complexes caused by a combination of the chelate ring conformation, the helicity of coordinated pendant arms, and the chirality of the coordinated phosphinate groups was observed. All Ga(3+) complexes are kinetically inert in both acidic and alkaline solutions. Complex formation studies in acidic solutions indicate that Ga(3+) complexes of the phosphinate ligands are formed quickly (minutes) and quantitatively even at pH <2. Compared to common Ga(3+) chelators (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives), these novel ligands show fast complexation of Ga(3+) over a broad pH range. The discussed TRAP ligands are suitable alternatives for the development of (68)Ga radiopharmaceuticals.  相似文献   

13.
[formula: see text] The synthesis of thrombin inhibitor 3, which incorporates conformationally constrained 7-azabicycloheptane carboxylic acid (1) as a proline replacement, is described. The inhibition constant (Ki(thrombin) = 2.9 nM) indicates that 1 is a reasonable replacement of proline in the formation of a beta-turn tripeptide mimetic.  相似文献   

14.
BACKGROUND: Group I beta-lactamases are a major cause of antibiotic resistance to beta-lactams such as penicillins and cephalosporins. These enzymes are only modestly affected by classic beta-lactam-based inhibitors, such as clavulanic acid. Conversely, small arylboronic acids inhibit these enzymes at sub-micromolar concentrations. Structural studies suggest these inhibitors bind to a well-defined cleft in the group I beta-lactamase AmpC; this cleft binds the ubiquitous R1 side chain of beta-lactams. Intriguingly, much of this cleft is left unoccupied by the small arylboronic acids. RESULTS: To investigate if larger boronic acids might take advantage of this cleft, structure-guided in-parallel synthesis was used to explore new inhibitors of AmpC. Twenty-eight derivatives of the lead compound, 3-aminophenylboronic acid, led to an inhibitor with 80-fold better binding (2; K(i) 83 nM). Molecular docking suggested orientations for this compound in the R1 cleft. Based on the docking results, 12 derivatives of 2 were synthesized, leading to inhibitors with K(i) values of 60 nM and with improved solubility. Several of these inhibitors reversed the resistance of nosocomial Gram-positive bacteria, though they showed little activity against Gram-negative bacteria. The X-ray crystal structure of compound 2 in complex with AmpC was subsequently determined to 2.1 A resolution. The placement of the proximal two-thirds of the inhibitor in the experimental structure corresponds with the docked structure, but a bond rotation leads to a distinctly different placement of the distal part of the inhibitor. In the experimental structure, the inhibitor interacts with conserved residues in the R1 cleft whose role in recognition has not been previously explored. CONCLUSIONS: Combining structure-based design with in-parallel synthesis allowed for the rapid exploration of inhibitor functionality in the R1 cleft of AmpC. The resulting inhibitors differ considerably from beta-lactams but nevertheless inhibit the enzyme well. The crystal structure of 2 (K(i) 83 nM) in complex with AmpC may guide exploration of a highly conserved, largely unexplored cleft, providing a template for further design against AmpC beta-lactamase.  相似文献   

15.
Chang CF  Ho CW  Wu CY  Chao TA  Wong CH  Lin CH 《Chemistry & biology》2004,11(9):1301-1306
Glycosidase inhibitors have shown great medicinal and pharmaceutical values as exemplified by the therapeutic treatment of influenza virus and non-insulin-dependent diabetes. We herein report the discovery of picomolar slow tight-binding inhibitors 2-5 against the alpha-fucosidase from Corynebacterium sp. by a rapid screening for an optimal aglycon attached to 1-aminomethyl fuconojirimycin (1). The time-dependent inhibition displays the progressive tightening of enzyme-inhibitor complex from a low nanomolar K(i) to picomolar K(i)* value. Particularly compound 2 with a K(i)* of 0.46 pM represents the most potent glycosidase inhibitor to date. The effect of compound 3 on the intrinsic fluorescence of alpha-fucosidase is both time- and concentration-dependent in a saturation-type manner, which is consistent with the initial formation of a rapid equilibrium complex of enzyme and inhibitor (E.I), followed by the slower formation of a tightly bound enzyme-inhibitor complex (E.I*). The binding affinity increases 3.5 x 10(4)-fold from 1 (K(i) = 16.3 nM) to 2 (K(i)* = 0.46 pM). This work clearly demonstrates the effectiveness of our combinatorial approach leading to the rapid discovery of potent inhibitors.  相似文献   

16.
Phosphinomethyl and carboxymethyl monoacids along with succinyl, malonyl ether, malonyl, and hydroxymalonyl diacids were substituted for phosphorylmethyl, phosphonoethyl, and phosphonomethyl groups in carbocyclic inhibitors of DHQ synthase. All but one of the carbocyclic inhibitors were synthesized via intermediacy of a 2,3-butane bisacetal-protected 3-dehydroquinic acid. Carbaphosphinate (K(i) = 20 x 10(-)(6) M) was a modest competitive inhibitor of DHQ synthase, while carbaacetate was a linear mixed-type inhibitor (K(i) = 3 x 10(-)(6) M, K(i)' = 20 x 10(-)(6) M). Carbasuccinate (K(i) = 5 x 10(-)(6) M), carbamalonate ether (K(i) = 7 x 10(-)(6) M), carbamalonate (K(i) = 0.7 x 10(-)(6) M), and carbahydroxymalonate (K(i) = 0.3 x 10(-)(6) M) were all competitive inhibitors. Carbaacetate was the only inhibitor that was not oxidized by DHQ synthase. On the basis of these data, carbocyclic inhibitors with malonyl and hydroxymalonyl groups are apparently bound by DHQ synthase as tightly as carbocyclic inhibitors possessing phosphorylmethyl and phosphonoethyl moieties.  相似文献   

17.
The synthesis, radiolabeling and in vitro evaluation of new silicon-fluoride acceptor (SiFA) derivatized D(2)-receptor ligands is reported. The SiFA-technology simplifies the introduction of fluorine-18 into target specific biomolecules for Positron-Emission-Tomography (PET). However, one of the remaining challenges, especially for small molecules such as receptor-ligands, is the bulkiness of the SiFA-moiety. We therefore synthesized four Fallypride SiFA-conjugates derivatized either directly at the benzoic acid ring system (SiFA-DMFP, SiFA-FP, SiFA-DDMFP) or at the butyl-side chain (SiFA-M-FP) and tested their receptor affinities. We found D(2)-receptor affinities for all compounds in the nanomolar range (K(i(SiFA-DMFP)) = 13.6 nM, K(i(SiFA-FP)) = 33.0 nM, K(i(SiFA-DDMFP)) = 62.7 nM and K(i(SiFA-M-FP)) = 4.21 nM). The radiofluorination showed highest yields when 10 nmol of the precursors were reacted with [(18)F]fluoride/TBAHCO(3) in acetonitrile. After a reversed phased cartridge purification the desired products could be isolated as an injectable solution after only 10 min synthesis time with radiochemical yields (RCY) of more than 40% in the case of SiFA-DMFP resulting in specific activities >41 GBq/μmol (>1,100 Ci/mmol). Furthermore, the radiolabeled products were shown to be stable in the injectable solutions, as well as in human plasma, for at least 90 min.  相似文献   

18.
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20?507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 ? resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.  相似文献   

19.
Aryl and vinyl nitriles have been prepared in very high yields from the corresponding bromides using palladium-catalyzed reactions with microwave irradiation employed as the energy source. Furthermore, flash heating was used successfully for the conversion of these nitriles into aryl and vinyl tetrazoles by cycloaddition reactions. One-pot transformation of aryl halides directly to the aryl tetrazoles could be accomplished both in solution and on solid support. All reactions were completed in minutes rather than in hours or days as previously reported with the standard thermal heating technique. A very potent HIV-1 protease inhibitor (K(i) = 0. 56 nM), comprising two tetrazole heterocycles as carboxyl group bioisosteres, was prepared in one pot by microwave-promoted cyanation of a bromo precursor and a subsequent cycloaddition reaction. The temperature-time profiles at 13, 20, and 60 W magnetron input power in DMF are presented.  相似文献   

20.
A series of novel indene derivatives designed by a scaffold selection gave access to several examples of (Z)-arylmethylideneindenes and indenylsulfonamides that acted as serotonin 5-HT(6) receptor ligands. Different synthetic multistep routes could be applied to these target compounds, each with their own complexity and limitations. A reasonable route involved the (3-indenyl)acetic acids as the key intermediates, and two alternatives were also examined. The first protocol used was a two-step sequence employing a modified Horner-Wadsworth-Emmons reaction, but better results were obtained with a procedure based on the condensation of indanones with the lithium salt of ethyl acetate, followed immediately by dehydration with acid and hydrolysis/isomerization under basic catalysis. (3-Indenyl)acetic acids were transformed to the corresponding acetamides, which were effectively reduced to indenylsulfonamides using an optimized procedure with AlH(3)-NMe(2)Et. The binding at the 5-HT(6) receptor was with moderate affinity (K(i) = 216.5 nM) for the (Z)-benzylideneindenylsulfonamide and enhanced affinity for the simple indenylsulfonamide counterpart (K(i) = 50.6 nM). Selected indenylsulfonamides were then tested, showing K(i) values as low as 20.2 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号