首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ideal shear strength under superimposed normal stress of cubic covalent crystals (C, Si, Ge, and SiC) is evaluated by ab initio density functional theory calculation. Shear directions in [112] and [110] on the (111) plane are examined. The critical shear stress along the former direction is lower than that along the latter in all the crystals unless the hydrostatic tension is extremely high. In both the [112]-shear and [110]-shear, critical shear stress is increased by compression in C but is decreased in the other crystals. The different response of the critical shear stress to normal stress is due to the strength of the bond-order term, i.e., dependence of the short-range interatomic attraction on the bond-angle.  相似文献   

2.
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and[1?10] directions.  相似文献   

3.
范希庆  万钧  申三国 《物理学报》1997,46(10):1978-1983
半经验的修正嵌入原子方法用于Ni,Pd和Pt的低指数面的表面应力计算,得到了与第一原理计算相符合的结果.给出了(110)表面[110]方向的应力是[001]方向应力的两倍左右;阐明了应力各向异性是所有fc金属(110)面的一般特性.预言了Pd和Pt(100)的表面应力的大小. 关键词:  相似文献   

4.
基于k·p微扰法研究单轴[110]应力作用下硅的导带结构,获得单轴[110]应力硅的导带底能量及电子有效质量.在此基础上,考虑电子谷间、谷内及电离杂质散射,采用弛豫时间近似计算单轴[110]应力硅沿不同晶向的电子迁移率.结果表明:单轴[110]应力作用下硅的电子迁移率具有明显的各向异性.在[001]、[110]及[110]输运晶向中,张应力作用下电子沿[110]晶向输运时迁移率有较大的增强,由未受应力时的1 450 cm2·Vs-1提高到2 GPa应力作用下的2 500 cm2·Vs-1.迁移率增强的主要原因是电子有效质量的减小,而应力作用下硅导带能谷分裂导致的谷间散射几率的减小对电子迁移率的影响并不显著.  相似文献   

5.

Anisotropy of the piezoresistance relaxations has been observed in p -(0 0 1)GaAs/Al 0.5 Ga 0.5 As heterostructures. The character of relaxation process depends on the direction of the applied uniaxial compression: after loading along [1 m 1 0] direction the specimen resistance relaxes down to the lower magnitude while after loading along [1 1 0] direction it relaxes up to the higher magnitude. Shubnikov-de Haas oscillations and Hall effect measurements indicate that variation of the carrier concentration j N in the quantum well during relaxation processes has different signs for uniaxial compression along [1 m 1 0] and [1 1 0] directions and correlates with the corresponding change of the resistance. The piezoelectric field that in GaAs can reach the magnitude E =1.152 2 10 6 V/m at uniaxial stress P =1 kbar along d 1 1 0 ¢ directions is supposed to be responsible for the metastable state after loading (unloading) and redistribution of carriers during the relaxation process.  相似文献   

6.
Utilizing a six-band k.p valence band calculations that considered a strained perturbation Hamiltonian, uniaxial stress-induced valence band structure parameters for Ge such as band edge energy shift, split, and effective mass were quantitatively evaluated. Based on these valence band parameters, the dependence of hole mobility on uniaxial stress (direction, type, and magnitude) and hole transport direction was theoretical studied. The results show that the hole mobility had a strong dependence on the transport direction and uniaxial stress. The hole mobility enhancement can be found for all transport directions and uniaxial stess configurations, and the hole transport along the [110] direction under the uniaxial [110] compressive stress had the highest mobility compared to other transport directions and stress configurations.  相似文献   

7.
刘汝霖  方粮  郝跃  池雅庆 《物理学报》2018,67(17):176101-176101
基于密度泛函理论的爬坡弹性带方法,对金红石相二氧化钛晶体中钛间隙、钛空位、氧间隙、氧空位4种本征缺陷的扩散特征进行了研究.对比4种本征缺陷在晶格内部沿不同扩散路径的过渡态势垒后发现,缺陷扩散过程呈现出明显的各向异性.其中,钛间隙和氧间隙沿[001]方向具有最小的扩散势垒路径,激活能分别为0.505 eV和0.859 eV;氧空位和钛空位的势垒最小的扩散路径分别沿[110]方向和[111]方向,激活能分别为0.735 eV和2.375 eV.  相似文献   

8.
利用应变技术和沟道晶向工程技术,均可有效增强Si基金属氧化物半导体器件的性能.本文提出了(100)Si p型金属氧化物半导体(PMOS)[110]晶向电导率有效质量双椭球模型,从理论上解释了Si PMOS[100]晶向沟道空穴迁移率为[110]晶向沟道空穴迁移率1.15倍的原因.基于(100)Si基应变PMOS反型层E-k关系,拓展应用该模型,首先获得了(100)Si基应变PMOS反型层价带第一子带等能图,然后给出了(100)Si基应变PMOS器件反型层[110]晶向空穴电导率有效质量模型.本文的模型方案合理可行,可为Si基应变PMOS器件的研究与设计提供有价值的参考.  相似文献   

9.
王冠宇  马建立  张鹤鸣  王晓艳  王斌 《物理学报》2011,60(7):77105-077105
本文首先讨论了在沿[110]方向的单轴应力对体Si材料能带结构参数的影响,在此基础上计算出单轴应变Si中平衡载流子浓度,给出了物理意义明确的导带、价带有效态密度的表达式.最后,结合有效态密度和禁带宽度的表达式,建立了[110]/(001)单轴应变Si本征载流子浓度模型.本文的研究方法亦适用于建立(001)面任意应力方向上的应变Si本征载流子浓度模型,并为相关单轴应变Si器件的设计、建模以及仿真提供了一定的理论参考. 关键词: [110]/(001)单轴应变Si 有效态密度 本征载流子浓度  相似文献   

10.
The strain behaviors as well as the structural and magnetic changes relative to the pretransition in the Ni50.5Mn24.5Ga25 single crystals have been characterized by various methods, such as pretransition strain, magnetostriction, magnetization measurements, and TEM observations. A large magnetostriction up to 505 ppm measured in the [001] direction of the sample is obtained at the pretransition temperature with only a low magnetic field of about 1 kOe applied along the [010] direction. We found that not only the pretransition strain pronounces a more large change, but also the magnetostriction at a certain temperature exhibits a more large magnitude for field applied along the [010] direction than with field along the [001] direction. It is concluded that the magnetoelastic interaction is responsible for the premartensitic transition, and the magnetoelastic interaction in the [010] direction is stronger than that in the [001] direction.  相似文献   

11.
Single-crystal ripple-like AlN nanowire with tuned diameter was fabricated through direct reaction aluminum with nitrogen by arc discharge method. The nanowires grow along the [0001] direction and have a radial expansion along the [10[`1]0][10\bar{1}0] direction. The periodic variation of the radial expansion toward [10[`1]0][10\bar{1}0] direction produces the ripple-like AlN nanowires. The growth mechanism of the AlN nanowires is discussed by considering the Al adlayer diffusion on the polar (0001) surface.  相似文献   

12.
We investigate the phonon thermal transport properties in InAs nanowires with different size and growth directions by using nonequilibrium molecular dynamics methods. The results show a remarkable anisotropy for the thermal conductivity in InAs nanowire. It is found that the thermal conductivity along [110] growth direction is about three times larger than that along [100] or [111] direction. With the increase of temperature, the thermal conductivity along [110] direction decreases significantly. However, the thermal conductivity along other two directions is not sensitive to temperature. Moreover, we find a crossover from ballistic to ballistic-diffusive thermal transport for a certain length of InAs nanowire. A brief physical analysis of these results is given. It is suggested that the anisotropy of thermal conductivity is common for nanowires with zinc blende structures.  相似文献   

13.
Investigations of the strength properties of materials under different loading conditions are of practical importance in many engineering applications. The knowledge of elastic moduli as a function of strain is required for determination of strength properties. In the present work, we have determined the elastic moduli of molybdenum through first principles study of the energy changes under three different loading conditions namely ‘uni-axial tensile deformation’ along [0 0 1] direction, ‘uni-axial tensile loading’ along [0 0 1] direction and ‘hydrostatic tensile loading’. The stability conditions for the system are expressed in terms of the elastic moduli and analyzed along the deformation paths corresponding to these three loading modes. The theoretical spall strength (σS), tensile strength (σT) along [0 0 1] direction and hydrostatic tensile strength (σH), are evaluated as a stress at the first onset of the instability for three loading conditions, respectively. The calculated equilibrium volume and elastic moduli are compared with that reported from experimental and other theoretical works.  相似文献   

14.
We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.  相似文献   

15.
The anisotropic resistances along [001] and [1-10] axes are investigated for an La5/8-yPryCa3/8MnO3(y = 0.43)(LPCMO) film grown on(110)-oriented La AlO3 substrate. It is found that the charge order(CO) transition is much stronger and the resistance is larger along the [001] direction than that along the [1-10] direction. Special attention has been paid to the different effects of a magnetic field on the resistances of the two axes. The resistance is more susceptible to the magnetic field along the [001] direction compared with that along the [1-10] direction. Our results demonstrate that the anisotropic transport properties can be ascribed to the intrinsic anisotropic strain field in the film, which changes the shape of metallic domains for the phase separation manganite film. We also provide a feasible method to rule out the Joule heat effect from the electric current effect. This could be useful for future construction and application of materials and devices.  相似文献   

16.
Jiayun Yu  Fuxing Yin  Tao Yu 《哲学杂志》2013,93(20):2517-2530
ABSTRACT

Molecular dynamics simulation was used to stretch Cu nanoplates along its [100] direction at various strain rates and temperatures. Under high strain rate and beyond the elastic limit, the Cu nanoplates underwent an unusual deformation mechanism with expansion along free surface lateral direction and contraction along the other lateral direction, which leaded to the face-centred-cubic phase transforming into unstressed body-centred-cubic phase. Under low strain rate, the deformation of the nanoplate went back to well-known dislocation mechanism. The face-centred-cubic to body-centred-cubic phase transformation mechanism was further discussed in terms of elastic stability theory and free surface stress effect.  相似文献   

17.
The observed magnetoresistance of single crystalline Gd5Si2Ge2 is negative and strongly anisotropic. The absolute values measured along the [100] and [010] directions exceed those parallel to the [001] direction by more than 60%. First principles calculations demonstrate that a structural modification is responsible for the anisotropy of the magnetoresistance, and that the latter is due to a significant reduction of electronic velocity in the [100] direction and the anisotropy of electrical conductivity.  相似文献   

18.
Distribution and morphology for dislocations introduced in (001) Si wafers subjected to bending stress at 800°, 900°, and 1100°C were investigated. For wafers bent around a [110] axis at 900° and 1100°C, straight dislocations appeared along the [110] direction only near the neutral plane, and were absent at the surfaces where bending stress is greatest. However, for wafers bent at 800 °C, such straight dislocations were not formed. Dependence of the dislocation distribution and morphology on heat treatment temperature is explained on the basis of interaction between bending stress and SiO2 precipitates introduced in bulk. Also, it was found that the straight [110] dislocations remained still near the neutral plane, even when additional reverse bending stress was applied around an axis parallel to the dislocations, but were transfered toward the tensile surface by bending around an axis normal to the dislocation direction.  相似文献   

19.
Orthorhombic LaFeO3, with spontaneous lattice strain (b - a)/(b + a) = 2.38 × 10−4, is shown by X-ray methods to be ferroelastic. The highly twinned as-grown crystals are detwinned by applying a compressive stress of about 2 MNm−2 along a combined a, b direction. The [010] direction in a single crystal is reproducibly transformable into the [100] direction under uniaxial stress. The resulting ferroelastic transformation is caused by atomic displacements of 0.23 Å for La, 0.48 Å for OI and 0.79 A for OII, the Fe atom remaining invariant at an inversion center. Coupling is expected between the ferroelasticity and the dominant antiferromagnetic spin orientation, but not with the weak ferromagnetism.  相似文献   

20.
An artificial new surface of (---Cu---O---) chains grown on Ag(110) surface was prepared by reacting a surface with Cu atoms, where the (---Cu---O---) chains grow in the [1 0] direction and are self-assembled on the Ag(110) surface in a (2 x 2)-p2mg structure. When the Cu---O/Ag(110) surface was heated in vacuum, the (---Cu---O---) chain decomposed to uniform cluster dots arranged along the [1 0] direction, where the cluster dots were composed of six Cu atoms. When the Ag(110) surface with the Cu---cluster dots was exposed to O2, the (---Cu---O---) lines were redrawn along the [1 0] direction by reacting a s in the [1 0] direction with O2. This is a reversible chemical reaction in one dimensional regime proved in atomic resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号