首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models. Figure
Schematic representation of how IAM-LC is used to predict drug penetration across the blood-brain barrier.  相似文献   

2.
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.
Figure
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept  相似文献   

3.
A new chromatographic method for the enantioseparation and the determination of (?)-trans-paroxetine and (+)-trans-paroxetine has been developed with the aid of amylose ovomucoid-based chiral stationary phase. The method is faster and five times more sensitive than procedures recommended previously: limit of detection and limit of quantification are 5 and 16 ng/mL, respectively [modified (Ferretti et al. in J Chromatogr B 710:157–164, 1998): 20 and 60 ng/mL]. It was carefully validated and applied for the determination of (?)-trans-paroxetine and (+)-trans-paroxetine in Parogen (Mc Dermott Laboratories Ltd.) and Xetanor (Actavis) coated tablets.
Figure
?  相似文献   

4.
The preparation of polymeric monoliths with embedded carboxy-modified single-walled carbon nanotubes (c-SWNTs) and their use for capillary electrochromatography (CEC) is described. Carbon nanotube composites were obtained by preparing a polymerization mixture in the presence of increasing c-SWNT concentrations, followed by UV initiation. The novel stationary phases were studied by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using short UV-polymerization times, the optimized porogenic solvent (a binary mixture of 1,4-butanediol and 2-propanol) gave rise to polymeric beds with homogenously dispersed embedded c-SWNTs. The CEC features of these monoliths were evaluated using polycyclic aromatic hydrocarbons (PAHs), non-steroidal anti-inflammatory drugs (NSAIDs) and chiral compounds. The monolith prepared in the presence of c-SWNTs showed enhanced resolution of the text mixtures, including a remarkable capability to separate enantiomers. Graphical Abstract
UV-polymerized polymeric monoliths with embedded c-SWNTs for CEC applications  相似文献   

5.
A new method to prepare polysaccharide-coating type chiral stationary phases (CSPs) was developed in this work. As a typical example, naked silica gel was coated by cellulose, which was then derivatized with 3,5-dimethylbenzoyl chloride to afford cellulose tris(3,5-dimethylbenzoate)-silica gel (CTDBS) complex. The silanols on CTDBS were end-capped with 3- aminopropyltriethoxysilane to obtain CSP 1. The amino groups on CSP 1 were further end-capped with 3,5-dimethylbenzoyl chloride to give CSP 2. The silanols on CTDBS were end-capped with methyltrimethoxysilane to yield CSP 3. CSPs 1-3 were characterized by FTIR, solid-state 13C-NMR and elemental analysis. The enantioseparation abilities of CSPs 1-3 were evaluated with structurally various chiral analytes. The enantioseparation results demonstrated that the end-capping moieties on CSPs 1 and 2 significantly affected enantioseparation. In addition, the effect of the structures of chiral analytes and end- capping moieties on the retention factors and the resolutions was discussed.  相似文献   

6.
2-Acetyldimedone and 12 related compounds were employed as UV-active pre-column derivatizing agents for amino acids. Direct enantioseparation of the products was achieved using chiral anion exchanger stationary phases in polar-organic mobile phase mode. Under basic conditions, the reagents´ cyclic β-tricarbonyl motifs can give rise to exo- and endocyclic enols through tautomerization. However, with primary amines (proteinogenic and unusual amino acids, aminosulfonic and aminophosphonic acids), we exclusively observed the formation of exocyclic enamine-type products. Reaction yields depended strongly on the 2-acyl modification of the reagent; in particular, we observed a significant decrease when electronegative or sterically demanding substituents were present in α-position to the exocyclic carbonyl group. In addition to improving UV detectability of the products, the introduction of this protective group facilitated successful enantiomer separations of the amino acid derivatives on Cinchona-based chiral anion exchangers. Particularly high enantiomer selectivity was observed in combination with stationary phases bearing a new variation of selectors with π-acidic (electron-poor) bis(trifluoromethyl)phenyl groups. No racemization of the analytes occurred at any stage of the analytical method including the deprotection, which was achieved with hydrazine.
Figure
Enantiomer separation of 2-undecenoyldimedone derivatives of proteinogenic amino acids phenylalanine and tryptophan on a chiral stationary phase with anion-exchange characteristics  相似文献   

7.
Amino acids represent a fraction of organic matter in marine and freshwater ecosystems, and a source of carbon, nitrogen and energy. l-Amino acids are the most common enantiomers in nature because these chiral forms are used during the biosynthesis of proteins and peptide. To the contrary, the occurrence of d-amino acids is usually linked to the presence of bacteria. We investigated the distribution of l- and d-amino acids in the lacustrine environment of Terra Nova Bay, Antarctica, in order to define their natural composition in this area and to individuate a possible relationship with primary production. A simultaneous chromatographic separation of 40 l- and d-amino acids was performed using a chiral stationary phase based on teicoplainin aglycone (chirobiotic tag). The chromatographic separation was coupled to two different mass spectrometers—an LTQ-Orbitrap XL (Thermo Fisher Scientific) and an API 4000 (ABSciex)—in order to investigate their quantitative performance. High-performance liquid chromatography coupled with mass spectrometry methods were evaluated through the estimation of their linear ranges, repeatability, accuracy and detection and quantification limits. The high-resolution mass spectrometer LTQ-Orbitrap XL presented detection limits between 0.4 and 7 μg?l ?1, while the triple quadrupole mass spectrometer API 4000 achieved the best detection limits reported in the literature for the quantification of amino acids (between 4 and 200 ng?l ?1). The most sensitive method, HPLC-API 4000, was applied to lake water samples. Figure
?  相似文献   

8.
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a u and q u , which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. Figure
?  相似文献   

9.
The enantiomers of 1-phenyl-1,2,3,4-tetrahydroisoquinoline have been directly separated on polysaccharide-based chiral stationary phases (CSPs). The normal phase separation of (S)- and (R)-1-phenyl-1,2,3,4-tetrahydroisoquinoline was accomplished by screening of the immobilized Chiralpak IC column with different eluents. The effect of mobile phase type on retention, selectivity and resolution was studied. 2-Propanol or ethanol/n-hexane/ethanolamine mixtures were applied as mobile phases by screening of following polysaccharide-based immobilized (Chiralpak IA, Chiralpak IC) and coated (Lux Cellulose-1, Lux Cellulose-2, Lux Amylose-2) CSPs. Polar organic and reversed-phase conditions were also tested for direct enantioseparation of 1-phenyl-1,2,3,4-tetrahydroisoquinoline.  相似文献   

10.
This paper presents a method for characterizing electric field profiles of radio frequency (rf) quadrupole ion trap structures using sensors based on slab coupled optical-fiber sensor (SCOS) technology. The all-dielectric and virtually optical fiber-sized SCOS fits within the compact environment required for ion traps and is able to distinguish electric field orientation and amplitude with minimal perturbation. Measurement of the fields offers insight into the functionality of traps, which may not be obtainable solely by performing simulations. The SCOS accurately mapped the well-known field profiles within a commercially available three-dimensional quadrupole ion trap (Paul trap). The results of this test allowed the SCOS to map the more complicated fields within the coaxial ion trap with a high degree of confidence as to the accuracy of the measurement. Figure
?  相似文献   

11.
The fluorescent tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ Fluor reagent kit from Waters) is a commercial N-terminal label for proteinogenic amino acids (AAs), designed for reversed-phase separation and quantification of the AA racemates. The applicability of AQC-tagged AAs and AA-type zwitterionic compounds was tested for enantiomer separation on the tert-butyl carbamate modified quinine and quinidine based chiral stationary phases, QN-AX and QD-AX employing polar-organic elution conditions. The investigated test analytes included the enantiomers of the positional isomers of isoleucine (Ile), threonine, homoserine, and 4-hydroxyproline. Furthermore, β-AAs, cyclic, and heterocyclic AAs including trans-2-amino-cyclohexane carboxylic acid and trans-2-aminocyclohexyl sulfonic acid, phenylalanine derivatives substituted with halides with increasing electronegativity and 3,4-dihydroxyphenylalanine, cysteine-related derivatives including homocysteic acid, methionine sulfone, cysteine-S-acetic acid, and cysteine-S-acetamide as well as a small range of aminophosphonic acids were enantioseparated. A mechanistic interaction study of AQC-AAs in comparison with fluoresceine isothiocyanate-labeled AAs was performed. The chiral and chemoselective recognition processes involved in enantiomer separation and retention was systematically discussed. Special emphasis was set on the influential factors exhibited by the chemistry, branching position, and spatial properties of the investigated zwitterionic analytes. The general interest to separate and distinguish between different types of branched-chained AAs and metabolic side products thereof lies in the toxicity of some of these compounds, which makes for instance allo–Ile an attractive candidate in disease-related biomarker research.
Figure
Separation of the four AQC-tagged isomers of 4-hydroxyproline (trans-D, cis-D, trans-L and cis-L) on the chiral stationary phase QD-AX  相似文献   

12.
Using quantum chemical calculations and infrared multiphoton dissociation (IRMPD) spectroscopy in the fingerprint and X-H stretching regions, we demonstrate here that the all-Ala b 6 fragment ion features a macrocyclic structure with C2 symmetry. For this structure, the ionizing proton is equally shared by the Ala(1) and Ala(4) amide oxygens in a Zundel-type symmetric (X…H+…X) H-bond. Figure
?  相似文献   

13.
Numerous strategies have been developed to mitigate the intrinsic low detection sensitivity that is a limitation of capillary electrophoresis. Among them, in-line stacking is an effective strategy to address the sensitivity challenge, and among the different stacking techniques, stacking based on field amplification is the most effective and simplest method of achieving high sensitivity without special complicated mechanisms or operations. This review introduces several stacking techniques based on field amplification. Field-amplified sample stacking, large-volume sample stacking, matrix field-amplified stacking injection (FASI), head-column FASI, matrix FASI combined with head-column FASI, FASI coupled with extraction and clean-up methods, electrokinetic supercharging, cation–anion selective exhaustive injection-sweeping-micellar electrokinetic chromatography, and newly developed techniques based on field amplification combined with other methods are included, and examples of straightforward methods for solving the sensitivity problem are provided. We also present a brief overview of the advantages, limitations, and future developments of these techniques. Graphical Abstract
?  相似文献   

14.
15.
Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein–protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics. Figure
HDX of protein backbone amide hydrogen  相似文献   

16.
A β-cyclodextrin (β-CD) and a hydroxypropyl-β-cyclodextrin (HP-β-CD) bonded chiral stationary phase (CSP) were prepared. Comparative evaluations of these two CSPs for the enantioseparation of hydrobenzoin, benzoin and α-phenethyl alcohol by reversed-phase liquid chromatography were presented. The effects of buffer composition in the mobile phase on the retention and enantioseparation were investigated. The borate buffer had a significant influence on the retention and enantioseparation of hydrobenzoin. Linear solvent strength retention model was used to fit the chromatographic data. Good linearity existed between the logarithm of retention factor (k) and the volume fraction of organic modifier (φ). Another retention model, stoichiometric displacement theory for retention, was also tried to fit the chromatographic data. The results showed that not only acetonitrile, but also water molecules participated in the displacing process of the solute.  相似文献   

17.
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer. Figure
?  相似文献   

18.
In the frame of a project aimed at finding non-steroidal farnesoid X receptor (FXR) agonists, we identified 4-(2,4-dimethoxyphenyl)-3,6-dimethyl-1-(2-tolyl)-4,8-dihydro-1H-pyrazole[3,4-e][1,4]thiazepin-7-one (1) as a hit endowed with FXR activity. Most of the compounds synthesised during the hit-to-lead optimisation work were characterised by the presence of two chiral centres and were therefore obtained as mixtures of anti(±)- and syn(±)-diastereoisomers. A restricted sub-set of species harboured with a carboxylic acid group on the distal phenyl ring of the biphenyl (a(±)5 (A1) and s(±)5 (S1)) or the phenoxyphenyl (a(±)6 (A2) and s(±)6 (S2)) moiety at C-4 position of the pyrazole[3,4-e][1,4]thiazepin-7-one core, resulted in suitable diastereo- and enantioresolution with a quinine (QN) carbamate-derived chiral stationary phase (CSP). Differently from the compounds usually analysed with QN-based CSPs, the couples A1/S1 and A2/S2 were atypical selectands, in which the two chiral carbon atoms reside at a remote position with respect to the carboxylic function, the main “point of attack” to the CSP. We produced evidence that the scarcely employed normal-phase (NP) eluent systems represent the elective choice for achieving the simultaneous diastereo- and enantioseparation of this class of compounds over the usually preferred reversed-phase (RP) and polar-organic (PO) modes of elution. Indeed, after the optimisation of the eluent composition, NP conditions allowed to obtain profitable enantioselectivity profiles, along with excellent diastereoselectivity levels (α(A1)?=?1.07, R S(A1)?=?1.15; α(S1)?=?1.09, R S(S1)?=?1.47; α(A2)?=?1.08, R S(A2)?=?1.31; and α(S2)?=?1.06, R S(S2)?=?1.18). The optimised NP methods are suitable for simultaneously providing information on the diastereo- and enantiopurity of the investigated compounds.
Figure
Simultaneous diastereoand enantioseparation of two non-steroidal FXR agonists with a quinine carbamate-based chiral stationary phase, in the normal-phase mode of elution.  相似文献   

19.
Characterization and optimization studies of N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH) as a new fluorogenic substrate in the peroxidation reaction catalyzed by DNAzyme are reported. The effects of pH, H2O2 concentration, metal-cation type, and the concentration and type of surfactant on the fluorescence intensity were investigated. The optimized reaction was subsequently used for the development of an assay for DNA detection based on a molecular-beacon probe. The use of a fluorogenic substrate enabled the detection of a single-stranded DNA target with a 1 nmol L?1 detection limit. Graphical Abstract
?  相似文献   

20.
Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(d-Cam)1/2(bdc)1/2(tmdpy) (d-Cam?=?d-camphoric acid; bdc?=?1,4-benzenedicarboxylate; tmdpy?=?4,4′-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(d-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m?×?530 μm i.d.) and column B (2 m?×?75 μm i.d.), were prepared by a dynamic coating method using Co-(d-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal–organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n?=?6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号