首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel, lipase-facilitated, supported liquid membrane (SLM) for the selective separation of organic acids by encapsulating a surfactant-lipase complex in the liquid membrane phase. This system exhibited a high transport efficiency for 3-phenoxypropionic acid and enabled the selective separation of organic acids due to the different solubilities of the acids in the organic phase and the variable substrate specificity of the surfactant-lipase complex in the liquid membrane phase. We found that various parameters, such as the amount of surfactant-lipase complex in the SLM, the lipase concentration in the receiving phase, and the ethanol concentration in the feed phase, affected the transport behavior of organic acids. The optimum conditions were 5 g L(-1) of the surfactant-CRL complex in the SLM (CRL=lipase from Candida rugosa), 8 g L(-1) of PPL in the receiving phase (PPL=lipase from porcine pancreas), and an ethanol concentration of 50 vol %. Furthermore, we achieved high enantioselective transport of (S)-ibuprofen attributable to the enantioselectivity of the surfactant-CRL complex.  相似文献   

2.
We have encapsulated a surfactant-protease complex (the main protease used being alpha-chymotrypsin) in an organic phase of a supported liquid membrane (SLM) for the optical resolution of various amino acids. L-Isomers of amino acids were enantioselectively permeated through the SLM. The mechanism of the amino acid permeation through the SLM was considered to be as follows; an L-amino acid was enantioselectively esterified with ethanol by a surfactant-protease complex encapsulated in the SLM, and the resulting L-amino acid ethyl ester dissolved into the organic phase of the SLM and diffused across the SLM. Another surfactant-alpha-chymotrypsin complex in the receiving phase catalyzed ester hydrolysis to produce the initial L-amino acid and ethanol, which are water-soluble. Thus, the L-amino acid was selectively transported to the receiving phase through the SLM on the basis of the molecular recognition of the surfactant-protease complex in the SLM. It was found that the catalytic activity and enantioselectivity of the surfactant-protease complex governed the permeate flux of amino acids and the enantiomeric excess in the membrane separation.  相似文献   

3.
This paper presents an experimental investigation on facilitated and simultaneous transport of mercury and lignosulfonate (LS) through a flat sheet supported liquid membrane (SLM) having Nylon 6,6 as support, trioctylamine (TOA) as carrier and dichloroethane as solvent. The experiments were performed at various operating conditions such as strip phase concentration, feed pH, carrier concentration and feed concentration to find the best set of parameters that would yield the maximum separation of pure mercury as well as its mixture with LS. The experiments were performed in co-transport mode using NaOH as the strip phase. It was observed that extraction of mercury as well as its mixture increases with increase in concentration of NaOH up to a certain limit 0.1 M NaOH in case of pure solution and 0.2 M NaOH in case of mixture). Feed phase pH significantly affects the mercury separation process. However, initial feed concentration does not affect the extraction process appreciably. Separation of mixture of mercury and LS behaves in a similar way as their pure solution; however the extraction is low in comparison to pure solution. The extraction of mercury from its pure solution is about 81% in 1 h. The extraction of mercury and LS from their mixture is about 52.6% and 50.2%, respectively at optimum condition and in a period of 2 h.  相似文献   

4.
SO2 gas separation using supported ionic liquid membranes   总被引:5,自引:0,他引:5  
Measurements of permeability of sulfur dioxide (SO2) in five imidazolium-based ionic liquids supported on the polyethersulfone microfiltration membranes at temperatures from 25 to 45 degrees C and atmospheric pressure indicate that under the same conditions, the SO2 selectivity of separations using supported ionic liquid membranes are 9-19 times that of CO2.  相似文献   

5.
Coupling lipase reactions with a supported liquid membrane (SLM) based on ionic liquids showed facilitative and selective permeation of (S)-ibuprofen through the SLM, indicating successful optical resolution of a racemic mixture using the enzyme-facilitative SLM.  相似文献   

6.
Hutson GE  Dave AH  Rawal VH 《Organic letters》2007,9(20):3869-3872
We report here the enantioselective carbonyl-ene reactions of various 1,1-disubstituted and trisubstituted alkenes with ethyl glyoxylate. The reactions are catalyzed by a new Co-salen complex, in which bulky triisobutylsilyl (TIBS) substituents occupy the positions ortho to the phenolic oxygens. This complex catalyzes the reactions under nearly ideal conditions - at room temperature and using catalyst loadings as low as 0.1 mol % - and provides the chiral, homoallylic alcohol products in excellent yields, enantioselectivities, and diastereoselectivities.  相似文献   

7.
Facilitated transport of silver ion across a supported liquid membrane (SLM) by calix[4]pyrroles, as selective ion carriers, dissolved in kerosene has been investigated. The influences of fundamental parameters affecting the transport of silver ion including ion carrier concentration in the membrane phase, thiosulfate concentration in strip phase, picric acid concentration in the feed phase, stirring speed of aqueous phases, type of membrane solvent and time of transport have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in the strip phase and picrate ion as ion pairing agent in the source phase, transport of silver occurs almost quantitatively after 75 min. The selectivity and efficiency of silver transport from aqueous solution containing Cu2+, Mg2+, Ni2+, Ca2+, Zn2+, Pb2+, Co2+, Al3+, Hg2+, Cd2+, Fe3+, Fe2+ and Cr3+ were investigated.  相似文献   

8.
[structure: see text] We report a homogeneous supported version of Koser's salt based on a room-temperature ionic liquid (RTIL) support. By altering the nature of the RTIL, a material was developed that was stable, recyclable, and readily separable from the tosyloxylated ketone products just by using variations in solvent polarity. A similar approach should be applicable to a wide range of supported catalysts and reagents.  相似文献   

9.
A new multicomponent bifunctional catalytic system based on a titanium complex was used for the efficient enantioselective cyanation of aldehydes. The catalyst was readily prepared from tetraisopropyl titanate (Ti(Oi-Pr)4), (S)-6,6'-dibromo-1,1'-bi-2-naphthol (1e), cinchonine (2a), and (1R,2S)-(-)-N-methylephedrine (3b). It was revealed that the combination of 1e, 2a, 3b, and Ti(IV) was essential in this cyanation. The reaction proceeded smoothly in the presence of a catalytic amount of the multicomponent catalyst to afford the desired cyanohydrins ethyl carbonates in moderate to excellent isolated yields (up to 95%) with high enantioselectivities (up to 94% ee). A catalytic cycle based on experimental phenomena was proposed to explain the origin of the asymmetric induction.  相似文献   

10.
The readily available and inexpensive new chiral oxazolidine in combination with Ti(O(i)Pr)(4) was found to catalyze the reaction of an alkynylzinc reagent with various types of aldehydes to generate chiral propargylic alcohols with high enantioselectivities (up to 95%) and excellent yields (up to 98%).  相似文献   

11.
For the first time, a homochiral metal-organic framework membrane was prepared for the enantioselective separation of important chiral compounds, especially chiral drug intermediates, which will allow for the potential development of a new, sustainable and highly efficient chiral separation technique.  相似文献   

12.
This paper presents an experimental and theoretical study on facilitated transport of lignosulfonate (LS) through a flat sheet supported liquid membrane using trioctylamine (TOA) as carrier and dichloroethane as diluent. The studies were carried out with various support materials and operating conditions (viz. carrier concentration, strip phase concentration, salt concentration, etc.) and their effects on the transport of LS. The results were analyzed to identify a suitable combination of support and operating condition that would yield best performance of the supported liquid membrane (SLM) in terms of fast and efficient transport of LS. The stability of the SLM was assessed in terms of loss of liquid from the pores of membrane support. The SLM is found to be stable till 10 h. Co-transport mechanism has been adopted in this work by using NaOH as the strip phase. It was observed that extraction of LS is increased with increase in concentration of NaOH up to a limiting value of 0.5 M NaOH. Difference of salt concentration between feed and strip phase considerably affect the separation process. The diffusional resistances of organic membrane (Δorg) and aqueous solution (Δaq) calculated from the permeation model, which is again a combination of three unique mechanisms viz., diffusion through a feed aqueous layer, a fast interfacial chemical reaction, and diffusion of carrier–complex through the organic membrane, are found to be 609.9 and 176.6 s cm−1, respectively. The values of the diffusion coefficient in the membrane (Dorg) and in the bulk organic phase (Dcomplex) are 1.67×10−9 and 6.68 × 10−8 m2s−1, respectively. The extraction of LS is about 90%. Nearly 43% of LS can be recovered at optimum condition.  相似文献   

13.
Electromembrane extraction (EME) of model analytes was carried out using a virtually rotating supported liquid membrane (SLM). The virtual (nonmechanical) rotating of the SLM was achieved using a novel electrode assembly including a central electrode immersed inside the lumen of the SLM and five counter electrodes surrounding the SLM. A particular electronic circuit was designed to distribute the potential among five counter electrodes in a rotating pattern. The effect of the experimental parameters on the recovery of the extraction was investigated for verapamil (VPL), trimipramine (TRP), and clomipramine (CLP) as the model analytes and 2‐ethyl hexanol as the SLM solvent. The results showed that the recovery of the extraction is a function of the angular velocity of the virtual rotation. The best results were obtained at an angular velocity of 1.83 RadS?1 (or a rotation frequency of 0.29 Hz).The optimization of the parameters gave higher recoveries up to 50% greater than those of a conventional EME method. The rotating also allowed the extraction to be carried out at shorter time (15 min) and lower voltage (200 V) with respect to the conventional extraction. The model analytes were successfully extracted from wastewater and human urine samples with recoveries ranging from 38 to 85%. The RSD of the determinations was in the range of 12.6 to 14.8%.  相似文献   

14.
Extraction of molybdenum by a supported liquid membrane method   总被引:1,自引:0,他引:1  
This is a report on the extraction of molybdenum(VI) ions using a supported liquid membrane, prepared by dissolving in kerosene, the extractant Alamine 336 (a long-chain tertiary amine) employed as mobile carrier. A flat hydrophobic microporous membrane was utilised as solid support. Appropriate conditions for Mo(VI) extraction through the liquid membrane were obtained from the results of liquid-liquid extraction and stripping partition experiments. The influence of feed solution acidity, the carrier extractant concentration in the organic liquid film and the content of strip agent on the metal flux through membrane were investigated. It was established that maximal extraction of metal is achieved at a pH 2.0 if sulphuric acid is used in the feed solution and at a pH value over 11.0 if Na2CO3 is used as strip agent. Moreover, the molybdenum extraction through membrane is enhanced when a 0.02 mol l−1 content of the amine carrier in the organic phase is used. The present paper deals with an equilibrium investigation of the extraction of Mo(VI) by Alamine 336 and its permeation conditions through the liquid membrane, and examines a possible mechanism of extraction.  相似文献   

15.
16.
The possible application of the supported liquid membrane (SLM) technique for the extraction of glyphosate is presented. For the extraction of this compound the SLM system has been applied with utilisation of Aliquat 336 as a cationic carrier incorporated into the membrane phase. The extraction efficiency of glyphosate [N-(phosphonomethyl)glycine] is dependent on the donor phase pH, carrier concentration in the organic phase and NaCl concentration in the acceptor phase. The optimal extraction conditions are: donor phase pH>11, acceptor phase of 2 M NaCl solution and the organic phase composed of 20% (w/w) Aliquot 336 solution in di-hexyl ether. Counter-coupled transport of chloride anions from the acceptor phase to the donor phase is a driving force of the mass transfer in this system.  相似文献   

17.
An automated system was developed for analysis of non-polar and polar ionisable compounds at trace levels in natural water. Sample work-up was performed in a flow system using two parallel membrane extraction units. This system was connected on-line to a reversed-phase HPLC system for final determination. One of the membrane units was used for supported liquid membrane (SLM) extraction, which is suitable for ionisable or permanently charged compounds. The other unit was used for microporous membrane liquid-liquid extraction (MMLLE) suitable for uncharged compounds. The fungicide thiophanate methyl and its polar metabolites carbendazim and 2-aminobenzimidazole were used as model compounds. The whole system was controlled by means of four syringe pumps. While extracting one part of the sample using the SLM technique. the extract from the MMLLE extraction was analysed and vice versa. This gave a total analysis time of 63 min for each sample resulting in a sample throughput of 22 samples per 24 h.  相似文献   

18.
19.
An experimental study on the removal of Cd2+ and Zn2+ through a supported liquid membrane using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) as carriers is presented. Parameters affecting the Cd2+ and Zn2+ pertraction such as feed concentration, carrier concentration, pH of the stripping phase, and TBP (tributyl phosphate) concentration were analyzed using the Taguchi method. Optimal experimental conditions for Cd2+ and Zn2+ pertraction were obtained using the analysis of variance (ANOVA) after a 6 h separation with the initial feed concentration of 8.9 × 10?4 mol L?1, carrier concentration of 20 vol. %, TBP concentration of 4 vol. %, and pH of 0.5. Then, under optimum conditions, a comparison of M2EHPA, D2EHPA, and bis-(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302) was performed. Effective pertraction of Cd2+ and Zn2+ using these carriers was observed in the following order: mixture of M2EHPA and D2EHPA, D2EHPA, Cyanex 302. It was also found that the presence of one metal ion in the feed solution reduces the pertraction rate of the other one.  相似文献   

20.
Optically active hydroxyaldehydes arc synthesized in 88–94% e.e. by the catalytic enantioselective addition of dialkylzinc using N,N-dibutylnorephedrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号