首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A successful preparation of a Schiff base copper complex was carried out directly in rap oil, using a W/O microemulsion reactor. The prepared Schiff base copper complex dispersed equably and spontaneously in the oil. Owing to a modification of the rap oil, by addition of 2%wt of Cu (II) chelate of bissalicylaldehyde-ethylenediamine, the friction coefficient decreased by 80% compared to that of the original one. It was verified by energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) analyses that steel/steel rubbing pairs underwent a selective transferring process with such modified lubricants. It was suggested that the mechanism for the improvement in the tribological characteristics of the modified lubricants was due to a selective transferring effect. The Cu (II) chelate of bissalicylaldehyde-ethylenediamine not only served as an additive in the rap oil, but also self-assembled on the surface of the 100Cr6 steel. The self-assembled monolayer (SAM) was examined using SEM techniques. The SAM was characterized with cyclic voltammetry (CV). It indicated that the SAM could activate the rubbing surface of 100Cr6 steel, which benefited the tribological chemical reaction.  相似文献   

2.
This article investigates the performance of ultra high molecular weight polyethylene (UHMWPE) modified with 15 wt% Cu (II) chelate of bissalicylaldehyde-ethylenediamine, a type of Schiff base copper complex that has antibacterium and antitumor activity, as a potential artificial hip joint material. The modified UHMWE demonstrated excellent tribological and biocompatible properties, and a higher wear resistance, a better thermal conductivity and increased deformation resistance as compared to pure UHMWPE.  相似文献   

3.
A W/O microemulsion reactor was used to prepare four kinds of modified lubricants: (i) modified lubricant 1, modified epoxidized microbial oil + rape oil in volume ratio of 1:1; (ii) modified lubricant 2, modified esterified microbial oil + rape oil in volume ratio of 1:3; (iii) modified lubricant 3, modified epoxidized rape oil; and (iv) modified lubricant 4, modified PAO. The individual modified lubricants were further modified with 0%, 0.5%, 1%, and 2% content of nano-Schiff base copper complex (nano-SBCC). A microtribometer was used to evaluate the friction coefficient between ball/flat point contacts immersed in the modified lubricants and operated in reciprocating and linear sliding mode. A comparison of the values of the friction coefficient with the lubricants further modified with nano-SBCC with those of their individual 0% nano-SBCC counterparts indicated significant decrease: (i) almost 19.18% was obtainable for the modified lubricant 1 with 2% of nano-Schiff base copper complex, (ii) almost 16.5% was obtainable for the modified lubricant 2 with 0.5% of nano-Schiff base copper complex; (iii) almost 7.42% was obtainable for the modified lubricant 3 with 1% of nano-SBCC; and (iv) almost 7.01% was obtainable for the modified lubricant 4 with 0.5% of nano-SBCC. These suggested that the addition of nano-Schiff base copper complex can efficiently decrease the friction coefficient of epoxidized or esterified microbial oil. Analyses of two-dimensional images, average profiles (across the mid-section y = 0 of the reciprocating sliding path), and three-dimensional topographies by confocal white light microscope for the worn surfaces of flats immersed in modified lubricant 1 and modified lubricant 2 suggested better wear-resistance of the modified lubricant 2 than that of the modified lubricant 1. The ability of wear resistance for the modified lubricant became better with the increasing content of nano-Schiff base copper complex from 0% to 2%. The study revealed the modification of epoxidized microbial oil + rape oil (1:1 volume ratio) and esterified microbial oil + rape oil (1:3 volume ratio) with Cu(II) chelate of bis(salicylaldehyde)ethylenediamine, reducing the magnitude of friction and wear because of their respective wear self-repairing ability. Such self-repairing ability furnishes the suitability of epoxidized microbial oil or esterified microbial oil to be effectively modified by nano-Schiff base copper complex and to substitute ordinary base oil as a mixture with rape oil.  相似文献   

4.
The synthesis and solid-state structure of mononuclear copper(II) complexes [Cu(SAIB)(H(2)O)(2)] (1), [Cu(SBAIB)(H(2)O)(2)]·H(2)O (2) and [Cu(SGABA)(H(2)O)(2)] (3) are described. Schiff base ligands H(2)SAIB, H(2)SBAIB and H(2)SGABA chelate the copper(II) ion in an O,N,O tridentate fashion. The square-pyramidal geometry of the final complexes is completed by two water ligands. The formation of an unusual seven-membered ring in the set of copper(II) N-salicylidene-aminoacidates is reported. Compounds 1-3 were evaluated by the antiradical activity assay.  相似文献   

5.
报道三种有推拉电子基团的肼基硫代酸酯衍生物配体(HL^1^~^3)。此类配体与二价过渡金属离子配位时脱去一质子,形成D-M-D和A-M-A(D=给体,M=金属,A=受体)类型、含有共轭体系的中性配合物。本文集中研究了该类配体的镍、铜、钯、铂配合物的IR、磁化率、ESR谱,电子光谱和三阶非线性光学性质,通过光谱研究初步确定了它们均为平面正方形构型配合物,文中还报道了CuL2^1的晶体结构。晶体属P1空间群,a=0.7835(2),b=1.0530(2),c=1.1816(2)nm,α=100.61(3),β=92.38(3),γ=110.00(3)ⅲ,Z=1,最终的R因子为0.063。通过晶体结构测试,进一步确定铜配合物的结构为平面构型。  相似文献   

6.
The behaviour of some Schiff bases in the presence of metal ions is very selective in complex formation. In this study, new, selective and easily prepared adsorbent materials have been developed. Multiwalled carbon nanotubes (MWCNTs) are quite suitable as supporting material for preparation of new solid phase adsorbents modified with Schiff bases due to their selective nature. Different Schiff bases were designed and synthesised as adsorbent agents for Ni(II) and Cu(II) ions, according to the literature, and MWCNTs were modified with these Schiff bases. The modification of CNTs was performed by adsorption from the alcoholic solution of Schiff base. The measurements of Ni(II) and Cu(II) ions were carried out using ICP-MS. Different parameters such as pH, model and eluent solution flow rates, eluent type, amount of ligand, sample volume and effect of foreign ions, which have an effect upon recovery of analytes, were investigated. The obtained results indicated that enrichment can be done with six modified adsorbent materials for Cu(II) at pH 9 and two modified adsorbent materials for Ni(II) at pH 8. It was concluded that four adsorbent materials were selective only for the enrichment of Cu(II). Merely one modified adsorbent material was noneligible for the enrichment of Cu(II) and Ni(II). The solid phase adsorbents prepared by modification with two of the Schiff bases used in this study showed an enrichment factor of 80 for both metal ions, whereas the solid phase adsorbents prepared by modification with four of the Schiff bases showed an enrichment factor of 40 for Cu(II) ions. The confirmation of the developed method was tested with certified reference materials with satisfactory results.  相似文献   

7.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

8.
Abstract

Bis chelate complexes of Cu(II) and Zn(II) were synthesized with methylamine and ethylamine Schiff base derivatiies of 2-acetylpyrrole. Stable complexes were obtained, with the exception of the Cu(II) ethylamine adduct. which slowly hydrolyzed in air to yield a mixed ligand product containing one ethylamine Schiff base and one 2-acetylpyrrole per metal centre. The instability of the bis Cu(II) ethylamine Schiff base complex with respect to stable Cu(II) methylamine and Zn(1I) ethylamine complexes is discussed.  相似文献   

9.
New bimetallic copper(I) and copper(II) complexes of dipyrromethane-derived Schiff base macrocycles are reported. Two different structural motifs were identified, providing support for the notion that ligands of this type can support a variety of coordination modes. In the case of the Cu(I) complexes, the metal centers were found to have a distorted tetrahedral geometry and be coordinated to two imine nitrogens on each side of the ligand, with the exact structure depending on the choice of Schiff base macrocycle. In contrast to what is seen for Cu(I), with Cu(II) as the coordinated cation the Cu(II) metal centers assumed distorted square planar geometries, and both pyrrole N-Cu and imine N-Cu interactions were confirmed by single-crystal X-ray diffraction analysis. This structural analysis revealed a copper-copper distance of 3.47 A, while SQUID magnetic susceptibility data provided evidence for antiferromagnetic coupling between the two metal centers.  相似文献   

10.
Three new homo-binuclear Ni(II), Cu(II), Zn(II) complexes (2-4), homo-tetranuclear Cu(II) complex (5), and hetero-tetranuclear Cu(II)-Ni(II) complex (6) of a macroacyclic potentially bis-hexadentate N2O4 Schiff base have been synthesized. The imino-alcohol ligand, H4L was obtained by the condensation of ethanolamine with 2,2'-[2,3-bis(1-formyl-2-naphthyloxymethyl)-but-2-ene-1,4-diyldioxy]bis(naphthalene-1-carbaldehyde). The structures of both the Schiff base and its complexes have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The ligand has two similar compartments to bind first primary two metal ions, and acts bi- or tetra-negative, bis-tetradentate forming five membered chelate ring. However, secondary two metal ions (either Cu2+ or Ni2+) are ligated with dianionic oxygen atoms of the alcohol groups and are linked to the 1,10-phenanthroline-nitrogen atoms in the tetranuclear complexes (5 and 6).  相似文献   

11.
By incorporation of synthesized magnetite nanoparticles (Fe3O4 NPs) coated with a new Schiff base into carbon paste electrode, a novel modified electrode was constructed for simultaneous determination of ultra trace amounts of Cd(II), Cu(II) and Hg(II). The complexation reaction of Schiff base with metal ions was studied spectrophotometrically. Under optimal conditions a detection limit of 0.20, 0.90 and 1.00 ng mL?1 for Cd(II), Cu(II) and Hg(II), respectively, was obtained. We take the advantages of the proposed method for simple, rapid, sensitive and selective simultaneous determination of trace amounts of hazardous Cd(II), Cu(II) and Hg(II) in water and foodstuff samples.  相似文献   

12.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

13.
Unsymmetrical Schiff base obtained by the condensation reaction of (1R,2R)(-)cyclohexanediamine with 2-hydroxybenzaldehyde and 2-hydroxynaphthaldehyde was used as a ligand for copper(II) and nickel(II). The ligand and complexes were characterized by circular dichroism (CD), UV-VIS, fluorescence, IR and (1)H (NOE diff), NOESY and (13)C NMR (ligand) spectra. The X-ray crystal structures solved for (1R,2R)(-)chxn(salH)(naftalH) and Cu(II)(1R,2R)(-)chxn(sal)(naftal) revealed tetrahedral distortion of coordination sphere in the solid phase. The [Cu(1R,2R)(-)chxn(sal)(naftal)]·0.5EtOH·1.25H(2)O complex crystallized in the monoclinic chiral C2 space group with two molecules in the asymmetric unit as well as disordered ethanol and water molecules. For both molecules Cu(II) ions were found in square-planar environments and adopts conformation described as "semi-open armed", because of distinctly oriented arms according to cyclohexane ring defined by three torsion angles. The thin layers of the ligands, copper(II) and nickel(II) complexes were deposited on Si(111) by a spin coating method and characterized with scanning electron microscopy SEM/EDS and fluorescence spectra. The ligand layers exhibit the most intensive fluorescence band at 498 nm, which can be assigned to emission transition π* → n of Schiff base ligand. For copper(II) layers the most intensive band from intraligand transition at 550 nm was observed. The highest intensity band was registered for the layer obtained when rotation speed was 1000 rpm and time 20 s. The nickel(II) complex layers fluorescence spectra exhibit an intensive band at 564 nm. The emission maxima of the copper(II) and nickel(II) complexes are shifted towards longer wavelength in comparison to the free ligand layers. CD spectra of the complexes in solution are characteristic for tetrahedral planar distortion of the chelate ring. The (1)H NMR NOE diff were measured and the position of the nearest hydrogen atoms in the cyclohexane and aromatic rings were discussed, suggesting the tetrahedral distortion of the central ion of the coordination sphere in solution.  相似文献   

14.
Structural control of Schiff base ligands for selective extraction of copper(II) was investigated by changing pendant arms and the distance between two imine-N donor atoms in ligands. Di-Schiff base ligands, N,N'-bis(2-quinolylmethylidene)-1,2-diiminoethane (BQIE), N,N'-bis(2-pyridylmethylidene)-1,3-diimino-2,2-dimethylpropane (BPMP) and N,N'-bis(2-quinolylmethylidene)-1,3-diimino-2,2-dimethylpropane (BQMP), were used as complexation reagents for ion-pair extraction of divalent transition metal cations into nitrobenzene with picrate anion. The pendant arms affected the lipophilicity of ligand to nitrobenzene, due to their polarity. The distance between two imine-N atoms, on the contrary, was a factor of controlling the extraction selectivity. BQMP has both 2-quinolyl pendant arms and trimethylene backbone structure; use of BQMP as a complexation reagent led to the selective extraction of Cu2+ in the system.  相似文献   

15.
Six tridentate Schiff base ligands containing tertiary butyl or benzyl substituents were prepared from chiral amino alcohols and salicylaldehyde derivatives. The ligands were employed as catalysts for the Cu(II) catalysed asymmetric Henry reaction. It was discovered that when different carboxylate salts were used instead of copper acetate as the Cu(II) salt, significant changes in the enantioselectivity of the reactions were observed. Addition of Cu(OAc)2 to the ligand prepared from salicylaldehyde and α,α‐diphenyl‐tert ‐leucinol resulted in the formation of dark green crystals. X‐ray structural analysis of these crystals showed that a square planar monomeric complex had been formed rather than the expected dimer. In the structure, the copper(II) centre is bonded to the tridentate ONO ligand and an acetate ion. There is a strong hydrogen bond between the protonated alcoholic oxygen of the Schiff base ligand and the uncoordinated acetate oxygen atom. These results, taken together, indicate that the carboxylate anion may be an important part of the active intermediate when this type of copper complex is used as a catalyst in the asymmetric Henry reaction.  相似文献   

16.
A new copper(II) complex [Cu(HL)(ClO4)](ClO4) (1), where HL is a multidentate Schiff base N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine), is prepared, structurally characterized by X-ray crystallography and its spectral and electrochemical properties studied. The complex forms a one-dimensional chain in the solid state structure in which the monomeric Cu(HL) units are linked by the perchlorate ligand. The complex has an axially elongated six coordinate geometry (4+2) with a CuN4O2 core in which the Schiff base ligand displays a tetradentate mode of bonding in the basal plane. The axial ligand is perchlorate with a significantly long Cu–O bond of ca. 2.6 Å. The one-electron paramagnetic complex displays a cyclic voltammetric response for the Cu(II)/Cu(I) couple at 0.01 V versus SCE in MeCN–0.1 M TBAP. The azomethine bond of the Schiff base in 1 on treatment with H2O2 undergoes oxidative conversion to form a bis(picolinato)copper(II) · dihydrate species through the formation of an amido intermediate as evidenced from the solution infrared spectral studies.  相似文献   

17.
New Schiff base complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) were synthesized by template condensation of quinoxaline-2-carboxaldehyde, L-histidine, and the metal compound, and were characterized by elemental analysis, fourier transform infrared spectroscopy, electronic spectra, conductance measurements, magnetic susceptibility measurements, ESR spectra, and thermal analysis. In all the complexes, the Schiff base coordinates through azomethine nitrogen, quinoxaline nitrogen, and carboxylato oxygen. The physicochemical and spectroscopic measurements reveal square planar geometry for the copper(II) complex, tetrahedral geometry for the manganese(II), cobalt(II), and zinc(II) complexes, and octahedral geometry for the iron(III) and nickel(II) complexes.  相似文献   

18.
A Schiff base, obtained by the condensation of isatin monohydrazone with 2,3,5-trichlorobenzaldehyde, and its Co(II), Ni(II), Cu(II), and Zn(II) complexes have been synthesized and characterized. The interaction of these complexes with DNA is investigated using viscosity, absorption titration, and electrochemical techniques. The results indicate that the complexes bind to Calf thymus DNA through intercalation. Oxidative cleavage activities of the complexes are studied using supercoiled pBR322 DNA by gel electrophoresis. Antimicrobial study reveals that copper and zinc complexes are better antimicrobial agents than the Schiff base and its other complexes.  相似文献   

19.
Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base (LH) derived from ceftazidime and salicylaldehyde were synthesized. The proposed structures of the new metal complexes based on the results of elemental analyses, molar conductivity, IR, DRUV and 1H NMR spectra, effective magnetic moment and thermal analysis were discussed. The surface morphology of Schiff base and metal complexes was studied by SEM. The composition of the metal complexes was ML2, where L is the deprotonated Schiff base ligand and M = Co(II), Ni(II) and Cu(II). IR spectral data indicated the Schiff base ligand being bidentately coordinated to the metallic ions with N and O atoms from azomethine and phenolic groups. All the complexes have square-planar geometry and are nonelectrolytes. The thermal analysis recorded that TG, DTG, DTA and DSC experiments confirmed the assigned composition and gave information about the thermal stability of complexes in dynamic air atmosphere. Theoretical investigation of the molecular structure of Schiff base ligand and its complexes was studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. The newly synthesized complexes were tested for in vitro antibacterial activity against selected Gram-negative and Gram-positive bacterial strains, and they exhibited an antibacterial activity superior to that of the Schiff base ligand.  相似文献   

20.
A new, simple Cu2+ nano‐structure Schiff base complex in methanol medium has been synthesized by the ultrasonic method. Structure of the compound was confirmed by FT‐IR, GC‐Mass and other spectroscopic techniques. The copper oxide (CuO) was achieved from the copper nano‐structure Schiff base complex as the raw material after calcination for 3 hr at 600 °C. According to results Cu2+ gives a complex with mole ratio 1:2 of metal to ligand (ML2) with Schiff base which a distorted square planer is the most probable geometry for it. The calculations results from XRD patterns propose the nano‐sized complexes. The SEM images show morphology of both the copper complex and the CuO powder were plate‐like. The metal chelates of Cu2+ in two states of bulk and nano have been screened for their in vitro antibacterial activity against four bacteria, gram‐positive (Staphylococcus aureus) and gram‐negative (Escherichia coli) and three strains of fungus (Aspergillus flavus). The nano metal chelates were shown to possess more antibacterial activity than the bulk chelate. Finally, the empirical parameters of Schiff base compounds showed a good agreement with theoretical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号