首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen  Man  Zheng  Zhiyong 《The Ramanujan Journal》2022,57(4):1473-1488

This paper studies Menon–Sury’s identity in a general case, i.e., the Menon–Sury’s identity involving Dirichlet characters in residually finite Dedekind domains. By using the filtration of the ring \({\mathfrak {D}}/{\mathfrak {n}}\) and its unit group \(U({\mathfrak {D}}/{\mathfrak {n}})\), we explicitly compute the following two summations:

$$\begin{aligned} \sum _{\begin{array}{c} a\in U({\mathfrak {D}}/{\mathfrak {n}}) \\ b_1, \ldots , b_r\in {\mathfrak {D}}/{\mathfrak {n}} \end{array}} N(\langle a-1,b_1, b_2, \ldots , b_r \rangle +{\mathfrak {n}})\chi (a) \end{aligned}$$

and

$$\begin{aligned} \sum _{\begin{array}{c} a_{1},\ldots , a_{s}\in U({\mathfrak {D}}/{\mathfrak {n}}) \\ b_1, \ldots , b_r\in {\mathfrak {D}}/{\mathfrak {n}} \end{array}} N(\langle a_{1}-1,\ldots , a_{s}-1,b_1, b_2, \ldots , b_r \rangle +{\mathfrak {n}})\chi _{1}(a_1) \cdots \chi _{s}(a_s), \end{aligned}$$

where \({\mathfrak {D}}\) is a residually finite Dedekind domain and \({\mathfrak {n}}\) is a nonzero ideal of \({\mathfrak {D}}\), \(N({\mathfrak {n}})\) is the cardinality of quotient ring \({\mathfrak {D}}/{\mathfrak {n}}\), \(\chi _{i}~(1\le i\le s)\) are Dirichlet characters mod \({\mathfrak {n}}\) with conductor \({\mathfrak {d}}_i\).

  相似文献   

2.
Given integers \(k\ge 2\), \(n \ge 2\), \(m \ge 2\) and \( a_1,a_2,\ldots ,a_m \in {\mathbb {Z}}{\backslash }{\{0\}}\), and let \(f(z)= \sum _{j=0}^{n}c_jz^j\) be a polynomial of integer coefficients with \(c_n>0\) and \((\sum _{i=1}^ma_i)|f(z)\) for some integer z. For a k-coloring of \([N]=\{1,2,\ldots ,N\}\), we say that there is a monochromatic solution of the equation \(a_1x_1+a_2x_2+\cdots +a_mx_m=f(z)\) if there exist pairwise distinct \(x_1,x_2,\ldots ,x_m\in [N]\) all of the same color such that the equation holds for some \(z\in \mathbb {Z}\). Problems of this type are often referred to as Ramsey-type problems. In this paper, it is shown that if \(a_i>0\) for \(1\le i\le m\), then there exists an integer \(N_0=N(k,m,n)\) such that for \(N\ge N_0\), each k-coloring of [N] contains a monochromatic solution \(x_1,x_2,\ldots ,x_m\) of the equation \(a_1x_1+a_2x_2+ \cdots +a_mx_m= f(z)\). Moreover, if n is odd and there are \(a_i\) and \(a_j\) such that \(a_ia_j<0\) for some \(1 \le i\ne j\le m\), then the assertion holds similarly.  相似文献   

3.
Xia  Aliang 《Acta Appl Math》2020,166(1):147-159

We study the existence, nonexistence and multiplicity of solutions to Chern-Simons-Schrödinger system

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l} -\Delta u+u+\lambda (\frac{h^{2}(|x|)}{|x|^{2}}+\int _{|x|}^{+ \infty }\frac{h(s)}{s}u^{2}(s)ds )u=|u|^{p-2}u,\quad x\in \mathbb{R}^{2}, \\ u\in H^{1}_{r}(\mathbb{R}^{2}), \end{array}\displaystyle \right . \end{aligned}$$

where \(\lambda >0\) is a parameter, \(p\in (2,4)\) and

$$ h(s)=\frac{1}{2} \int _{0}^{s}ru^{2}(r)dr. $$

We prove that the system has no solutions for \(\lambda \) large and has two radial solutions for \(\lambda \) small by studying the decomposition of the Nehari manifold and adapting the fibering method. We also give the qualitative properties about the energy of the solutions and a variational characterization of these extremals values of \(\lambda \). Our results improve some results in Pomponio and Ruiz (J. Eur. Math. Soc. 17:1463–1486, 2015).

  相似文献   

4.
Define \(g_n(x)=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k\) for \(n=0,1,2,\ldots \). Those numbers \(g_n=g_n(1)\) are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving \(g_n(x)\). For example, for any prime \(p>5\) we have
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p. \end{aligned}$$
This is similar to Wolstenholme’s classical congruences
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{1}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{1}{k^2}\equiv 0\pmod p \end{aligned}$$
for any prime \(p>3\).
  相似文献   

5.
For a vector \(\mathbf a = (a_1,\ldots ,a_r)\) of positive integers, we prove formulas for the restricted partition function \(p_{\mathbf a}(n): = \) the number of integer solutions \((x_1,\dots ,x_r)\) to \(\sum _{j=1}^r a_jx_j=n\) with \(x_1\ge 0, \ldots , x_r\ge 0\) and its polynomial part.  相似文献   

6.

Consider the following nonparametric model: \(Y_{ni}=g(x_{ni})+ \varepsilon _{ni},1\le i\le n,\) where \(x_{ni}\in {\mathbb {A}}\) are the nonrandom design points and \({\mathbb {A}}\) is a compact set of \({\mathbb {R}}^{m}\) for some \(m\ge 1\), \(g(\cdot )\) is a real valued function defined on \({\mathbb {A}}\), and \(\varepsilon _{n1},\ldots ,\varepsilon _{nn}\) are \(\rho ^{-}\)-mixing random errors with zero mean and finite variance. We obtain the Berry–Esseen bounds of the weighted estimator of \(g(\cdot )\). The rate can achieve nearly \(O(n^{-1/4})\) when the moment condition is appropriate. Moreover, we carry out some simulations to verify the validity of our results.

  相似文献   

7.
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field \(\nabla u\) and the gradient orientation field \(\nabla d\). More precisely, we show that \(0< T_{ \ast}<+\infty\) is the maximal time interval if and only if
$$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$
or
$$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$
where \(i,j,k\in\{1,2,3\}\), \(i\neq j\), \(i\neq k\), and \(j\neq k\).
  相似文献   

8.

We study integrals of the form

$$\begin{aligned} \int _{-1}^1(C_n^{(\lambda )}(x))^2(1-x)^\alpha (1+x)^\beta {{\,\mathrm{\mathrm {d}}\,}}x, \end{aligned}$$

where \(C_n^{(\lambda )}\) denotes the Gegenbauer-polynomial of index \(\lambda >0\) and \(\alpha ,\beta >-1\). We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as \(n\rightarrow \infty \).

  相似文献   

9.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

10.
We study the asymptotic expansion for the Landau constants \(G_n\) , $$\begin{aligned} \pi G_n\sim \ln N + \gamma +4\ln 2 + \sum _{s=1}^\infty \frac{\beta _{2s}}{ N^{2s}},\quad n\rightarrow \infty , \end{aligned}$$ where \(N=n+3/4, \gamma =0.5772\ldots \) is Euler’s constant, and \((-1)^{s+1}\beta _{2s}\) are positive rational numbers, given explicitly in an iterative manner. We show that the error due to truncation is bounded in absolute value by, and of the same sign as, the first neglected term for all nonnegative \(n\) . Consequently, we obtain optimal sharp bounds up to arbitrary orders of the form $$\begin{aligned} \ln N+\gamma +4\ln 2+\sum _{s=1}^{2m}\frac{\beta _{2s}}{N^{2s}}< \pi G_n < \ln N+\gamma +4\ln 2+\sum _{s=1}^{2k-1}\frac{\beta _{2s}}{N^{2s}} \end{aligned}$$ for all \(n=0,1,2,\ldots , m=1,2,\ldots \) , and \(k=1,2,\ldots \) . The results are proved by approximating the coefficients \(\beta _{2s}\) with the Gauss hypergeometric functions involved and by using the second-order difference equation satisfied by \(G_n\) , as well as an integral representation of the constants \(\rho _k=(-1)^{k+1}\beta _{2k}/(2k-1)!\) .  相似文献   

11.

We prove that given any \(\epsilon >0\), a non-zero adelic Hilbert cusp form \({\mathbf {f}}\) of weight \(k=(k_1,k_2,\ldots ,k_n)\in ({\mathbb {Z}}_+)^n\) and square-free level \(\mathfrak {n}\) with Fourier coefficients \(C_{{\mathbf {f}}}(\mathfrak {m})\), there exists a square-free integral ideal \(\mathfrak {m}\) with \(N(\mathfrak {m})\ll k_0^{3n+\epsilon }N(\mathfrak {n})^{\frac{6n^2+1}{2}+\epsilon }\) such that \(C_{{\mathbf {f}}}(\mathfrak {m})\ne 0\). The implied constant depends on \(\epsilon , F\).

  相似文献   

12.
Yuan  Baoquan  Li  Xiao 《Acta Appl Math》2019,163(1):207-223

This paper deals with the regularity of weak solutions to the 3D magneto-micropolar fluid equations in Besov spaces. It is shown that for \(0\le\alpha\le1\) if \(u\in L^{\frac{2}{1+\alpha}}(0,T; \dot{B}_{\infty,\infty}^{\alpha})\), then the weak solution \((u,\omega ,b)\) is regular on \((0,T]\).

  相似文献   

13.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

14.

We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on \(\ell ^r\)-valued extensions of linear operators. We show that for certain \(1 \le p, q_1, \dots , q_m, r \le \infty \), there is a constant \(C\ge 0\) such that for every bounded multilinear operator \(T:L^{q_1}(\mu _1) \times \cdots \times L^{q_m}(\mu _m) \rightarrow L^p(\nu )\) and functions \(\{f_{k_1}^1\}_{k_1=1}^{n_1} \subset L^{q_1}(\mu _1), \dots , \{f_{k_m}^m\}_{k_m=1}^{n_m} \subset L^{q_m}(\mu _m)\), the following inequality holds

$$\begin{aligned} \left\| \left( \sum _{k_1, \dots , k_m} |T(f_{k_1}^1, \dots , f_{k_m}^m)|^r\right) ^{1/r} \right\| _{L^p(\nu )} \le C \Vert T\Vert \prod _{i=1}^m \left\| \left( \sum _{k_i=1}^{n_i} |f_{k_i}^i|^r\right) ^{1/r} \right\| _{L^{q_i}(\mu _i)}. \end{aligned}$$ (1)

In some cases we also calculate the best constant \(C\ge 0\) satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators.

  相似文献   

15.
In this paper we study trigonometric series with general monotone coefficients, i.e., satisfying
$$\begin{aligned} \sum \limits _{k=n}^{2n} |a_k - a_{k+1}| \le C \sum \limits _{k=[{n}/{\gamma }]}^{[\gamma n]} \frac{|a_k|}{k}, \quad n\in \mathbb {N}, \end{aligned}$$
for some \(C \ge 1\) and \(\gamma >1\). We first prove the Lebesgue-type inequalities for such series
$$\begin{aligned} n|a_n|\le C \omega (f,1/n). \end{aligned}$$
Moreover, we obtain necessary and sufficient conditions for the sum of such series to belong to the generalized Lipschitz, Nikolskii, and Zygmund spaces. We also prove similar results for trigonometric series with weak monotone coefficients, i.e., satisfying
$$\begin{aligned} |a_n | \le C \sum \limits _{k=[{n}/{\gamma }]}^{\infty } \frac{|a_k|}{k}, \quad n\in \mathbb {N}, \end{aligned}$$
for some \(C \ge 1\) and \(\gamma >1\). Sharpness of the obtained results is given. Finally, we study the asymptotic results of Salem–Hardy type.
  相似文献   

16.
Fix any \(n\ge 1\). Let \(\tilde{X}_1,\ldots ,\tilde{X}_n\) be independent random variables. For each \(1\le j \le n\), \(\tilde{X}_j\) is transformed in a canonical manner into a random variable \(X_j\). The \(X_j\) inherit independence from the \(\tilde{X}_j\). Let \(s_y\) and \(s_y^*\) denote the upper \(\frac{1}{y}{\underline{\text{ th }}}\) quantile of \(S_n=\sum _{j=1}^nX_j\) and \(S^*_n=\sup _{1\le k\le n}S_k\), respectively. We construct a computable quantity \(\underline{Q}_y\) based on the marginal distributions of \(X_1,\ldots ,X_n\) to produce upper and lower bounds for \(s_y\) and \(s_y^*\). We prove that for \(y\ge 8\)
$$\begin{aligned} 6^{-1} \gamma _{3y/16}\underline{Q}_{3y/16}\le s^*_{y}\le \underline{Q}_y \end{aligned}$$
where
$$\begin{aligned} \gamma _y=\frac{1}{2w_y+1} \end{aligned}$$
and \(w_y\) is the unique solution of
$$\begin{aligned} \Big (\frac{w_y}{e\ln (\frac{y}{y-2})}\Big )^{w_y}=2y-4 \end{aligned}$$
for \(w_y>\ln (\frac{y}{y-2})\), and for \(y\ge 37\)
$$\begin{aligned} \frac{1}{9}\gamma _{u(y)}\underline{Q}_{u(y)}<s_y \le \underline{Q}_y \end{aligned}$$
where
$$\begin{aligned} u(y)=\frac{3y}{32} \left( 1+\sqrt{1-\frac{64}{3y}}\right) . \end{aligned}$$
The distribution of \(S_n\) is approximately centered around zero in that \(P(S_n\ge 0) \ge \frac{1}{18}\) and \(P(S_n\le 0)\ge \frac{1}{65}\). The results extend to \(n=\infty \) if and only if for some (hence all) \(a>0\)
$$\begin{aligned} \sum _{j=1}^{\infty }E\{(\tilde{X}_j-m_j)^2\wedge a^2\}<\infty . \end{aligned}$$
(1)
  相似文献   

17.

In this paper we study the following fractional Hamiltonian systems

$$\begin{aligned} \left\{ \begin{array}{lllll} -_{t}D^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}x(t))- L(t).x(t)+\nabla W(t,x(t))=0, \\ x\in H^{\alpha }(\mathbb {R}, \mathbb {R}^{N}), \end{array} \right. \end{aligned}$$

where \(\alpha \in \left( {1\over {2}}, 1\right] ,\ t\in \mathbb {R}, x\in \mathbb {R}^N,\ _{-\infty }D^{\alpha }_{t}\) and \(_{t}D^{\alpha }_{\infty }\) are the left and right Liouville–Weyl fractional derivatives of order \(\alpha \) on the whole axis \(\mathbb {R}\) respectively, \(L:\mathbb {R}\longrightarrow \mathbb {R}^{2N}\) and \(W: \mathbb {R}\times \mathbb {R}^{N}\longrightarrow \mathbb {R}\) are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and \(W \in C^{1}(\mathbb {R}\times \mathbb {R}^{N},\mathbb {R})\) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition.

  相似文献   

18.
Let \((M,g)\) be a two dimensional compact Riemannian manifold of genus \(g(M)>1\). Let \(f\) be a smooth function on \(M\) such that
$$\begin{aligned} f \ge 0, \quad f\not \equiv 0, \quad \min _M f = 0. \end{aligned}$$
Let \(p_1,\ldots ,p_n\) be any set of points at which \(f(p_i)=0\) and \(D^2f(p_i)\) is non-singular. We prove that for all sufficiently small \(\lambda >0\) there exists a family of “bubbling” conformal metrics \(g_\lambda =e^{u_\lambda }g\) such that their Gauss curvature is given by the sign-changing function \(K_{g_\lambda }=-f+\lambda ^2\). Moreover, the family \(u_\lambda \) satisfies
$$\begin{aligned} u_\lambda (p_j) = -4\log \lambda -2\log \left( \frac{1}{\sqrt{2}} \log \frac{1}{\lambda }\right) +O(1) \end{aligned}$$
and
$$\begin{aligned} \lambda ^2e^{u_\lambda }\rightharpoonup 8\pi \sum _{i=1}^{n}\delta _{p_i},\quad \text{ as } \lambda \rightarrow 0, \end{aligned}$$
where \(\delta _{p}\) designates Dirac mass at the point \(p\).
  相似文献   

19.
Zhou  Jiuru 《Archiv der Mathematik》2021,116(6):693-706

In this paper, we study vanishing and splitting results on a complete smooth metric measure space \((M^n,g,\mathrm {e}^{-f}\mathrm {d}v)\) with various negative m-Bakry-Émery Ricci curvature lower bounds in terms of the first eigenvalue \(\lambda _1(\Delta _f)\) of the weighted Laplacian \(\Delta _f\), i.e., \(\mathrm {Ric}_{m,n}\ge -a\lambda _1(\Delta _f)-b\) for \(0<a\le \dfrac{m}{m-1}, b\ge 0\). In particular, we consider three main cases for different a and b with or without conditions on \(\lambda _1(\Delta _f)\). These results are extensions of Dung and Vieira, and weighted generalizations of Li-Wang, Dung-Sung, and Vieira.

  相似文献   

20.

We study a multilinear version of the Hörmander multiplier theorem, namely

$$ \Vert T_{\sigma}(f_{1},\dots,f_{n})\Vert_{L^{p}}\lesssim \sup_{k\in\mathbb{Z}}{\Vert \sigma(2^{k}\cdot,\dots,2^{k}\cdot)\widehat{\phi^{(n)}}\Vert_{L^{2}_{(s_{1},\dots,s_{n})}}}\Vert f_{1}\Vert_{H^{p_{1}}}\cdots\Vert f_{n}\Vert_{H^{p_{n}}}. $$

We show that the estimate does not hold in the limiting case \(\min \limits {(s_{1},\dots ,s_{n})}=d/2\) or \({\sum}_{k\in J}{({s_{k}}/{d}-{1}/{p_{k}})}=-{1}/{2}\) for some \(J \subset \{1,\dots ,n\}\). This provides the necessary and sufficient condition on \((s_{1},\dots ,s_{n})\) for the boundedness of Tσ.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号