首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈刚  温中泉  武志翔 《物理学报》2017,66(14):144205-144205
传统光学器件的衍射极限极大地制约了远场超分辨光学系统的进一步发展.如何从光学器件层面突破光学衍射极限瓶颈,实现非标记远场超分辨光学成像,是光学领域面临的巨大挑战.光学超振荡在不依靠倏逝波的条件下,可以在远场实现任意小的亚波长光场结构,这为突破光学衍射极限提供了一条崭新的途径.近年来,光学超振荡现象和超振荡光学器件的相关研究得到了快速发展,在理论和实验上成功地演示了超振荡光场的产生和多种超振荡光学器件,并在实验上展示了超振荡光学器件在非标记远场超分辨光学显微、成像以及超高密度数据存储等应用领域的巨大优势和应用潜力.本文对光学超振荡相关理论、超振荡光学器件设计理论和方法、超振荡光学器件发展现状、超振荡光场测试方法以及超振荡光学器件的应用等方面进行详细介绍和分析.  相似文献   

2.
由于衍射极限的存在,传统光学透镜成像分辨率理论上只能达到入射光波长的一半。通过恢复和增强携带物体细部特征信息的高频倏逝波,基于表面等离子体的平面金属透镜有望突破这种光学衍射极限,实现超分辨成像。本文对平面薄膜式与纳米结构式两类平面金属透镜进行了综述,详细介绍了若干典型平面金属透镜的结构设计、工作机理及其聚焦性能,并对其特点与存在的问题进行了分析与讨论。由于光波在金属中传播时存在一定损耗,如何更高效地增强高频倏逝波信号并转换成传播波,使其参与成像,以更好地实现远场超分辨成像,以及如何进一步增大近场超高分辨率聚焦光斑焦深以及减小远场聚焦光斑尺寸,是表面等离子体平面金属透镜进一步研究的重点。  相似文献   

3.
秦飞  洪明辉  曹耀宇  李向平 《物理学报》2017,66(14):144206-144206
突破瑞利衍射极限,实现纯光学的远场超衍射极限聚焦和成像在科学和工程的各个领域都有重要意义.现有光学超分辨技术都存在一些固有的限制因素,如工作距离短、适用领域窄、不利于集成等问题.平面超透镜由于理论上的创新、设计灵活、效率高、方便集成等优势,成为实现超衍射极限的有效途径.本文综述了平面超透镜的物理原理及其在超衍射极限聚焦和成像方面近年来的研究进展,并讨论了该领域面临的问题和未来的研究重点和方向.  相似文献   

4.
针对传统声束的衍射极限问题,如何构建具有更高分辨率的聚焦声场,是实现超分辨声成像和声操控领域的重大挑战之一.本文在考虑成像分辨率同时兼顾声场可控制性,提出了一种基于粒子群优化算法的多频超振荡超分辨聚焦声场设计方法.基于常规换能器声场的衍射效应,利用半波带法设计中心频率菲涅耳透镜,并以中心频率为基准在换能器带宽范围内设置多频信号来构建超振荡声场,进一步通过粒子群算法对多频声束的振幅和相位进行优化,在远场构建了焦域半径能够小于中心频率半波长的超振荡声场,还发现其尺寸小于最高频率声场的所形成焦域半径,进一步证明其焦域半径随着中心频率和超振荡频率数的增大而减小.研究结果为可控超分辨声聚焦提供了一种简便易行的方法.  相似文献   

5.
超振荡平面透镜(super-oscillatory lens, SOL)是近几年出现的新型平面光学元件,基于矢量角谱理论设计了振幅型和相位型SOL,采用时域有限差分法对衍射聚焦光场进行严格电磁仿真计算,研究发现:当照明激光束腰半径w_0小于SOL半径a时,超衍射极限聚焦能力明显下降,聚焦光斑强度衰减超过50%;束腰半径w_0对相位型SOL影响更剧烈,且会发生显著正向焦移;当w_0不小于2a时可获得接近理想的聚焦特性.倾斜照明条件下,大数值孔径振幅型SOL一般允许的倾斜角度小于10°,而相位型SOL具有宽广的倾角适应性(可超过40°),聚焦光斑会发生横向展宽,且强度急剧下降.大数值孔径SOL对无限远点物成像会产生显著的负畸变和波动变化的场曲,小数值孔径SOL在宽视场范围内则无畸变.本文研究结果为SOL在超衍射极限聚焦、超分辨显微成像、飞秒激光直写微纳加工等领域的实际应用提供重要理论支撑.  相似文献   

6.
超表面可以对入射光场的相位、偏振、幅度等自由度进行精确调控,为发展下一代基于量子态片上实验平台提供了一种新途径,具有重要的应用前景.本文提出了一种新型的超表面结构,即具有不同占空比的硅结构光栅单元构成的超透镜,在焦平面上可形成聚焦光环.研究了在焦平面上环形光场的强度分布和不同数值孔径超透镜的聚焦特性.采用这种超透镜聚焦光环来构建一个氟化镁(MgF)分子的光学存储环,计算了MgF分子在聚焦光场中所受的光学势和偶极力,对MgF分子束在存储环运动过程进行了Monte-Carlo模拟.研究结果表明,设计的超表面结构具有很好的聚焦特性,聚焦光环的光场强度比入射光增强了55.1倍;同时可以实现对MgF分子的装载并囚禁在表面存储环内.  相似文献   

7.
传统光学透镜及光学系统基于光传播效应实现电磁波调控功能,其体积较大、不易集成。而超表面是由人工亚波长尺度单元构成的二维平面结构,由于其相对于传统透镜具有超薄的优势,并且可以实现对光场的任意调控,近年来在光学成像领域得到广泛研究和应用。本文阐述了超表面透镜的工作原理,分析了超表面成像透镜的单色像差和色像差成因以及对应的像质评价方法,之后综述了超表面成像透镜的研究现状及应用,最后总结了超表面在成像领域尚且存在的问题及其未来发展方向。超表面透镜便于集成、设计自由度高,有望在诸多应用领域取代传统成像器件,基于超表面的高效率、大视场、宽带、可重构可调谐成像器件将成为其未来重要发展方向。  相似文献   

8.
带限函数在某区间内的振荡速度超过其最高傅里叶分量的特殊性质被称为超振荡.基于超振荡原理的微纳光子学器件可在不依赖倏逝波条件下于远场处突破衍射极限,因此在超分辨成像、纳米光刻及高密度光存储等领域具有重要应用.简要介绍了超振荡原理,重点归纳了几种超振荡微结构器件的设计及其聚焦成像性能,并指出了这些器件的不足及未来的研究重点.  相似文献   

9.
胡睿璇  潘冰洋  杨玉龙  张伟华 《物理学报》2017,66(14):144209-144209
随着纳米科学技术的发展,如何打破光学衍射极限,将光学显微术的分辨本领推进到纳米尺度,已经成为光学领域的一个核心议题.在此背景下,过去的三十年间,发展了多种超分辨光学显微技术,并在生物、材料、化学领域取得了一系列令人瞩目的应用.本文以衍射理论为线索,回顾各类基于线性成像系统的超分辨光学显微技术;对以固浸物镜、结构光照明、扫描近场光学显微术、完美透镜以及超振荡透镜为代表的超分辨光学显微技术进行综述,讨论各种技术的原理,对其特点、应用与局限加以总结,并对该领域的未来发展予以展望.  相似文献   

10.
高强  王晓华  王秉中 《物理学报》2018,67(9):94101-094101
为突破传统衍射极限实现远场超分辨率成像,提出了一种微波频段宽带立体超透镜用于目标远场超分辨率成像.该透镜可将携带着目标超分辨率信息的凋落波分量转换为传播波分量辐射到远场,进而可在远场接收这些信息并用于超分辨率成像.分别从频域和时域两方面对该透镜的超分辨率特性进行验证.在频域,利用多重信号分类算法对借助于该结构的扩展目标实现了λ/12的远场超分辨率成像,大幅度提升了成像效果.在时域,结合时间反演技术,验证了带宽提升对空间超分辨率聚焦特性带来的明显优势.  相似文献   

11.
徐伟  袁群  高志山  于颢彪  孙一峰  屈艺 《应用光学》2019,40(6):1139-1151
受衍射极限的影响,传统光学显微镜的分辨率最高约为波长的一半,突破衍射极限,获得更高的成像分辨率是近年来显微成像领域的研究热点。相比于其他超分辨显微成像方式,基于微球透镜的超分辨显微成像方式具有简单直接、免标记等优点。主要介绍国内外研究团队将微球与传统的光学显微镜结合实现超分辨显微成像的研究进展,从微球透镜参数选择、成像方案、成像分辨率、成像视场及成像机理等多角度进行总结与比对;并结合课题组工作,介绍了将微球透镜与干涉显微技术相结合的三维超分辨检测技术,阐述了Linnik型与Mirau型两种检测光路原理,分析了三维超分辨检测的效果;展望了微球透镜超分辨显微技术在显微成像与显微干涉检测两个方面待解决的问题与发展方向。  相似文献   

12.
近年来,随着各种新型荧光探针的出现和成像方法的改进,远场光学成像的分辨率已经突破了衍射极限的限制。基于结构光照明的荧光显微技术凭借成像速度快、光毒性弱等优点,已成为目前主流的超分辨成像技术之一。实现结构光照明超分辨显微成像的关键在于照明光场的精准调控和后期的超分辨图像重建算法,否则将会在重建的超分辨图像中产生不可预估的伪影,混淆对观测结构真实形态的判断。详细对比了几种典型的结构光照明显微超分辨重建算法,证明基于图像重组变换的结构光照明超分辨图像重建算法可以有效解决极低结构光场调制度下的超分辨图像重建问题,降低结构光照明显微中的激发光功率。  相似文献   

13.
超表面的设计与制造极大地推动了在片上紧凑光学系统中实现光场调控的应用。传统光学系统中的光学透镜、空间光调制器以及偏振光学元件虽具备光场调控的功能,但体积庞大、光场调控功能单一等因素限制了其应用。超表面为光场调控提供了新平台,有望解决传统光学元件和系统向微型化、集成化和多功能化发展的瓶颈。主要围绕超表面的多维度全息混合复用、二维/三维光场变换、矢量光场的产生与操控三方面进行介绍。最后,对超表面的未来发展趋势进行了展望。  相似文献   

14.
柱矢量光束的紧聚焦在光学微操纵、光学存储、激光微加工、超分辨率成像和粒子加速等领域发挥着重要作用。亚波长光栅平凹透镜对柱矢量光束的紧聚焦的能力仍有提升空间,本文利用闪耀结构将光的能量从零级转移并集中到-1级,对亚波长光栅平凹透镜的聚焦性能进行优化。提高了透镜的衍射效率,增强了焦场的能量。通过调整高斯径向偏振光的形状参数,改变入射光振幅及入射区域半径实现对焦场能量的动态调控。进一步地,调控柱矢量光束的偏振组分能够直接有效地横向调制焦场,获得多样化形貌的焦斑。本文的优化手段对于其他光栅透镜也具有参考意义,该研究结果在超分辨率成像以及光场调控等领域具有潜在的应用价值。  相似文献   

15.
提出了一种超分辨波长调控变焦超透镜的设计方法,同时对相位、色散、振幅进行调控,在提升超透镜轴向变焦能力的基础上,采用分层粒子群优化(HPSO)算法不断压缩超透镜的点扩散函数,使超透镜的半峰全宽(FWHM)不断逼近甚至小于衍射极限0.5λ/NA(NA为数值孔径)。作为理论验证,设计了一种工作在68~80μm波长范围内的超分辨波长调控变焦超透镜。仿真结果表明,其轴向变焦能力约为常规衍射超透镜的1.52倍,在73~78μm波长范围内的横向分辨率小于衍射极限。  相似文献   

16.
超构表面是由精心设计和排布的亚波长纳米单元组成的平面元件,其可以在微观尺度下调制电磁场,从而实现波前的任意调控。目前,它已被用来灵活地操纵相位、偏振、振幅等各种光学参数。超构透镜是超构表面中相当重要且非常活跃的一个研究方向,由于其厚度在波长量级,与传统光学透镜相比,能够显著增加光学器件的集成度并且降低结构复杂度。但是,单元结构材料的固有色散以及结构几何形状衍射效应导致的色差会严重影响超构透镜的成像质量,从而限制了其在光电子器件中的潜在应用。本文首先讨论超构透镜控制色差的原理。随后回顾了几种重要的成像应用,包括分立波长消色差,宽带聚焦成像,光场成像等重要的成像系统。最后,本文对超构透镜未来的发展方向和应用前景做出展望。  相似文献   

17.
基于银板超透镜和多带相位二元光学衍射理论,提出一种超聚焦透镜结构.利用时域有限差分和标量衍射理论数值分析显示,这种超透镜在可见光范围,具有单一焦点,焦斑尺寸约0.36 λ,聚焦位置和焦深可达10 λ以上,在近场光学扫描显微镜和超分辨成像及光刻等系统中有潜在应用前景.  相似文献   

18.
基于可调谐复振幅滤波器的超长焦深矢量光场   总被引:1,自引:0,他引:1       下载免费PDF全文
王吉明  赫崇君  刘友文  杨凤  田威  吴彤 《物理学报》2016,65(4):44202-044202
根据矢量光场衍射积分理论和离散复振幅光瞳滤波原理, 通过一种由双λ/2波片和离散复振幅滤波器组成的可调谐复振幅滤波器, 研究了大数值孔径下超长焦深聚焦矢量光场的构建与调控. 给出了一个六环带区的离散复振幅滤波器, 对入射光场的偏振态、振幅滤波和相位滤波三者进行同步优化, 获得了焦深接近10λ的三维平顶光场; 通过调控双λ/2波片夹角来改变聚焦光场的矢量化结构, 使之在光针场、平顶光场、光管场及中间结构光场之间交替变化. 研究结果揭示了入射光场矢量化结构演化与聚焦光场矢量化结构变换之间的关系, 解决了获取动态的、可调控的超长焦深聚焦光场的问题. 两种基本的聚焦光场光针场、光管场的独自使用或三维平顶光场的调和使用, 将会在光学显微、光学微纳操控以及光学精细加工领域获得重要应用.  相似文献   

19.
20世纪90年代中期,随着Shor算法和Grover算法的提出,量子计算领域得到广泛关注.金刚石固态NV色心方案作为量子计算机热门物理实现方案之一,因其在室温下的超长相干时间和可精确操控等独特优势而备受青睐;此外,NV色心还有望通过磁共振成像方式实现单核自旋探测.然而NV色心固态量子计算的一种扩展方式受限于相邻NV色心之间的磁偶极相互作用,要求两个NV色心之间相距只有数十纳米.这一尺度远小于普通远场光学的分辨率,即光学衍射极限,采用传统的共聚焦方法已无法分辨.受激发射损耗(STED)和基态损耗(GSD)等超分辨成像技术能够突破光学衍射极限限制,达到纳米量级的分辨率;同时结合最新的金刚石表面微纳刻蚀技术,可实现NV色心固态量子计算中不同色心的分辨和精确定位.该文从固态金刚石NV色心体系和光学衍射等主要方面对利用STED和GSD高分辨成像技术提高传统共聚焦显微镜对NV色心体系成像分辨率进行简要的介绍,并结合实例介绍一些最新的研究进展.  相似文献   

20.
提高能量密度的超衍射极限激光光束相位补偿技术   总被引:1,自引:0,他引:1  
定义了激光光束衍射远场光斑压缩前后的能量比以及能量密度比来衡量超衍射极限激光光束的质量。通过利用反向传递算法设计了合适的补偿相位板,不但对准直放大的单一横模激光光束进行小于光学衍射极限的发散度的压缩,同时又保证光束能量集中于压缩后的远场衍射主瓣中,使压缩后的远场衍射光斑的能量密度增加。给出了相应的实例。这一结论不但解决了光学超分辨中光束压缩与能量损失不可避免这一矛盾,而且为发散度小且能量密度高的超衍射极限激光光束的实验工作以及该类光束的实际应用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号