首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The adsorption behavior of 1,4-benzenedithiol (1,4-BDT) on colloidal gold and silver surfaces has been investigated by means of surface-enhanced Raman scattering (SERS). 1,4-BDT chemisorbed dissociatively on both gold and silver surfaces but as mono- and dithiolate, respectively. Regardless of the bulk concentration of 1,4-BDT, only a monolayer was assembled on the silver surface with a flat orientation by forming two Ag–S bonds. On the gold surface, the monothiolate species,1,4-BDT−1, appeared to assume a rather flat orientation at a very low surface coverage, but as the surface coverage was increased, the adsorbate took a perpendicular orientation. Furthermore, when the bulk concentration of 1,4-BDT was close to that required for a full-monolayer coverage limit, a band assignable to the S–S stretching vibration appeared at 536 cm−1 in the gold sol SERS spectra. A separate ellipsometry measurement performed with vacuum-evaporated gold substrates revealed that up to tetralayers could be assembled on gold in 1 mM n-hexane solution of 1,4-BDT while at best a bilayer formed in either methanol or ethanol solution. The different adsorbate structure of 1,4-BDT on gold and silver was overall quite comparable to that of p-xylene-α,α′-dithiol.  相似文献   

3.
Iminodiacetic acid (IDA) and octyl moieties were covalently bound on nonporous particles, which were prepared from dispersion polymerization of methyl methacrylate and glycidyl methacrylate. After being charged with copper ions, the IDA-bound particles could specifically adsorb deoxyribonuclease I (DNase I) through the affinity interaction between protein and immobilized metal ion. A mixed-ligand (metal–chelate and octyl–bound) support was obtained after hydrophobic (octyl) groups were also introduced to the particle surface. The affinity adsorption of DNase I on the copper–IDA chelate was influenced by interaction between the protein and the bound octyl group. Both the affinity and the hydrophobic interactions could be well described by the Langmuir isotherms. The equilibrium adsorption constants were estimated separately to be 0.96 and 0.50 liter g−1 for affinity and hydrophobic bindings, respectively. For binding on mixed-ligand support, the adsorption constant was 0.45 liter g−1. It was evident that both affinity and hydrophobic interactions are involved in the adsorption of proteins onto mixed-ligand particles. Desorption of the inactive proteins from the support was possible by increasing the hydrophobicity of the solution.  相似文献   

4.
This paper deals with the effect of different low-molecular-weight poly(ethylene oxide)s on the rheology of concentrated aqueous colloidal silica suspensions (volume fraction >0.2) with the aim of obtaining well-dispersed media. Results are correlated with the physico-chemical characteristics of the systems that govern the ranges of the various operating interactions, i.e., mainly surface coverage, molecular weight of the polymer, and ionic strength of the medium. Optimization of the fluidification occurs to be strongly linked to these parameters. An unexpected effect of free polymer bulk concentration leads to improved fluidification when the characteristic lengths of the system are correctly adjusted; it has been interpreted in the frame of recent theories.  相似文献   

5.
Dynamic surface tension and its diffusional decay have been studied with four different polydisperse C12E7 at different temperatures and different concentrations. The CMC and the headgroup area from equilibrium surface tension were shown with polydispersity and temperature. The chain length of oxyethylene on the surface was derived from comparison between the headgroup area of monodisperse dodecyl ethoxylates and that of polydisperse C12E7. The values for (Deff/D) were deduced with a diffusion-controlled adsorption model using parameters obtained from equilibrium surface tension. It was shown at short adsorption time that molecules were really adsorbed onto the surface in a diffusion-controlled manner. At a comparably long adsorption time, the ratios (Deff/D) were calculated by assuming the selective adsorption onto the surface. The modified Arrhenius-type equation was proposed by putting a concentration term in front of the exponential terms. The modified Arrhenius-type equation gave Ea=30 kJ/mole for this system. Ea directly derived without an Arrhenius plot was between 9 to 11 kJ/mole. It was an indication that the activation energy alone was not enough to explain the decay of dynamic surface tensions.  相似文献   

6.
The quantitative analysis examining the functional group distribution of a dispersant polymer for magnetic paints is conducted by statistical estimation and adsorption experiments. The dispersant polymer contains averagely one or two functional groups on the chain, and has generally large polydispersity. By the calculation based on the random distribution of the functional group and the molecular weight, a typical design of the dispersant polymer is found to contain a significant amount of nonfunctionalized chains and highly functionalized ones. In adsorption experiments, the adsorbed amount of the polymer mass and the functional group are separately measured to determine the functional group distribution. The distribution is also evaluated by a sequential adsorption experiment, in which the chains are fractionated by the adsorption strength. Obtained experimental results agree with the calculated results. A practical method for increasing the effective chains in the paint is to make use of a preferential adsorption of the functionalized chain.  相似文献   

7.
Fibrinogen (FB), a serum protein, is considered a major inhibitor of lung surfactant function at the lining layer of the alveoli. In this study, the adsorption of aqueous bovine FB at the air/water interface was investigated with tensiometry and directly probed for the first time with ellipsometry and infrared reflection adsorption spectroscopy (IRRAS). The tension results show that FB has moderate surface activity. The surface densities of FB were calculated by using two different ellipsometry models to range from 3±0.2 to 17±2 mg/m2, for 7.5 to 750 ppm of FB in water at 25°C. Although FB at concentrations from 75 to 750 ppm reached about the same steady surface tension value, the surface densities at 750 ppm FB were substantially larger. The same techniques were used for studying aqueous mixtures of 7.5 to 750 ppm FB with 2 mM of sodium myristate (SM) to investigate a possible interaction of the SM with the protein. The behavior of the FB/SM mixtures was found to be close to that of SM alone. The surface tension of the FB/SM mixtures reached values less than 10 mN/m under surface area oscillation at 20 or 80 rpm. These results and the ellipsometry and the IRRAS results indicate that at a concentration of 2 mM SM, FB, up to 750 ppm, does not inhibit the surfactant surface-tension-lowering function. In certain cases the results demonstrate that FB and SM may act cooperatively in lowering the surface tension.  相似文献   

8.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

9.
Adsorption of amphiphilic dimers is analyzed in the framework of density functional Ono–Kondo theory. There are three configurations for dimers absorbed at a surface: one parallel to the surface and two perpendicular to the surface (AB and BA, with A or B touching the surface, respectively). Densities of molecules in each configuration are calculated from density functional theory and compared to Monte Carlo simulation data. There is good agreement between theory and simulations. It is shown that the parallel configuration is preferred over the perpendicular configuration, except when there are very strong asymmetries in intermolecular forces. In most cases, the parallel configuration is even preferred over the combination of the two perpendicular configurations.  相似文献   

10.
The exchange of the original cation present on a Laponite clay (usually Na+) for heavy atoms such as Rb+, Cs+, and Tl+ significantly alters the emission characteristics of some aromatic hydrocarbons (p-terphenyl, naphthalene, pyrene, and biphenyl). The increase of the atomic mass of the cation induces a decrease of the fluorescence emission simultaneous with an increase of the emission in the region of lower energies of the spectra, ascribed to the phosphorescence of those hydrocarbons. Time-resolved experiments for the pyrene–clay system showed a decrease of singlet lifetimes for the heavier atoms. Hydrocarbon aggregates were also detected from both the emission spectra and the time-resolved studies. The “excimer-like” emission showed longer lifetimes (10–25 ns) than the monomolecular hydrocarbons (1–3 ns), as already found for other similar systems. The amount of aggregates increased for the heavier cations due to the smaller surface available on the clay particles. Experiments increasing the amount of Tl+ in samples containing a constant concentration of naphthalene allowed evaluation of the distance between the heavy atoms and the probe on the clay surface. The Perrin model treatment was used and resulted in approximately R0=9.2 Å.  相似文献   

11.
The dynamic electrophoretic mobility of a concentrated dispersion of biocolloids such as cells and microorganisms is modeled theoretically. Here, a biological particle is simulated by a particle, the surface of which contains dissociable functional groups. The results derived provide basic theory for the quantification of the surface properties of a biocolloid through an electroacoustic device, which has the merit of making direct measurement on a concentrated dispersion without dilution. Two key parameters are defined to characterize the phenomenon under consideration: the first, A, is associated with the pH of the dispersion, and the second, B, is associated with the equilibrium constant of the dissociation reaction of the functional group. We show that if A is large and/or B is small, the surface potential is high, and the effect of double-layer polarization becomes significant. In this case the dynamic electrophoretic mobility may have a local maximum and a phase lead as the frequency of the applied electric field varies. Due to the hydrodynamic interaction between neighboring particles, the dynamic electrophoretic mobility decreases with the concentration of dispersion.  相似文献   

12.
The zeta (zeta) potential of an insoluble monolayer of stearic acid at the air-water interface was measured as a function of pH in the presence of 0.0001, 0.001, and 0.01 M NH4NO3. The zeta potential was measured by means of the plane interface technique which involved the determination of the electrophoretic velocity profile of reference (polystyrene latex) particles along the solution depth in a rectangular open quartz cell. The zeta vs pH relationship at 0.001 and 0.01 M NH4NO3 was analyzed in terms of the Gouy-Chapman-Stern-Grahame model for electrical double-layer incorporating a simple site-binding model used previously for many oxide and latex colloid studies. The dissociation constant (pKa) of stearic acid monolayer and double-layer parameters such as integral capacitances of inner and outer Helmholtz layers and the complexation constant of counterion complexes were also estimated.  相似文献   

13.
The adsorption behavior of 6-thioguanine (6TG) on a hanging mercury drop electrode has been studied with ac and cyclic voltammetry in 0.1 M Na2SO4 and 0.01 M sodium acetate solutions at pH 4.3. Several condensed phases of chemically adsorbed 6TG as well as one phase of physically adsorbed 6TG have been characterized. Under total coverage conditions, the films of chemiadsorbed molecules inhibit rather efficiently the electrode reaction of mercury oxide formation.  相似文献   

14.
The filming process of polystyrene nanolatex (NPS) particles was studied by a combination of various methods. For a constant annealing time of 1 h, the AFM images showed that the deformation and interdiffusion temperatures of NPS particles were ca. 90 and 100-110 degrees C, respectively. In spin-lattice relaxation measurements of solid state NMR, it is found that T1L, T1S, and PL increased significantly after annealing at 90 and 100 degrees C for 1 h. DSC results showed that there was a exothermic peak near Tg after annealing for 1 h at the elected temperatures below 95 degrees C; otherwise, the exothermic peak disappeared after annealing at 100 degrees C or above. The apparent density of NPS increased suddenly in the temperature range of 90-110 degrees C. The results indicated that the macromolecules are highly constrained in NPS particles, leading to higher conformational energy, with more free volume and segments less restricted, which are the driving forces for the particles sintering at a lower temperature compared to the micro-PS particles with larger diameter.  相似文献   

15.
Polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) prepared by various activation methods were characterized using low-temperature nitrogen adsorption over a wide relative pressure from 10−6 to 1. Nitrogen adsorption is a standard tool for determination of porous structure parameters. In the present work, we carried out extensive adsorption studies of a series of PAN-ACFs activated by different methods. It was shown that the high-resolution αS plot provided valuable information about structural properties of samples under study. The pore size distributions of samples under study were calculated by employing the regularization method according to density functional theory. By these analyses, the pore development and the dominant pores of samples prepared by different methods can be clearly observed. Moreover, the adsorption measurement could provide profound insight into the structural heterogeneity of the ACFs.  相似文献   

16.
Binary mixed monolayers of octadecanoic acid and three related amphiphilic compounds (octadecanamide, octadecylamine, octadecylurea) have been investigated at the air/water interface by surface pressure–area (Π–Â) isotherms and their resistances to water evaporation (r). In addition, the excess free energies of mixing (ΔGE) were calculated using the Goodrich method. Both the ln r vs x and ΔGE vs x plots exhibit marked deviations from linearity, indicating a high degree of miscibility and nonideal behavior of the components in the mixed films. For all of these binary systems the excess free energies of mixing have been found to be minimum for a certain composition corresponding almost to a maximum in evaporation resistances. Weak interactions were detected in octadecanoic acid/octadecanamide monolayers, whereas significant condensation effects were observed in 1 : 1 mixed films containing octadecanoic acid and octadecylamine. This is attributed to an acid–base equilibrium followed by the formation of a well-ordered arrangement of COO and NH3+ head groups bound to each other by electrostatic forces. The unusual polymorphism of octadecylurea monolayers could be influenced by adding small amounts of octadecanoic acid. The formation of the low-temperature phase (β-phase) is completely suppressed, if the acid content exceeds 8 mol%. The octadecanoic acid seems to induce the formation of the high-temperature phase (α-phase), which is characterized by a vertical orientation of the hydrocarbon chains.  相似文献   

17.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

18.
An ethanol solution of Ti-peroxy compounds was prepared from the ethanol solution of titanium isopropoxide (Ti(O-iPr)4) and H2O2. Heating of the ethanol solution of the Ti-peroxy compounds at 348 K formed a Ti-peroxy gel, and heat treatment of the gel at 348 K for more than 6 h formed gels that consisted of anatase nanoparticles. The diameter of the anatase nanoparticles increased from 9 to 15 nm as the heating time increased from 6 to 48 h. According to the results of the N2 adsorption measurement, the anatase nanoparticles had micropores, and the specific surface area (SBET) was in the range of 254 to 438 m2/g. The particle size, lattice strain, specific surface area, and photocatalytic activity of the anatase nanoparticles can be regulated by the heating time of the Ti-peroxy gel at 348 K.  相似文献   

19.
The interactions between PEO and sodium alkylcarboxylates (octyl, decyl, and dodecyl) have been investigated by conductivity measurements and gel permeation chromatography (GPC). Also included in the study was sodium dodecyl sulfate. From the conductivity measurements the critical aggregation concentration, ionization degree, and binding ratios were determined; the binding ratio was also determined from GPC. PEO–surfactant interactions were observed for all the studied surfactants, except sodium octanoate. For the polymer–surfactant complexes the ionization degree was in all cases observed to be about 0.2 higher than the ionization degree for the corresponding aqueous micelles. Further, the binding ratio decreased somewhat with decreasing chain length of the alkylcarboxylate. The Gibbs free energy showed that the polymer–surfactant interaction decreases with decreasing chain length of the alkylcarboxylates and is weaker for alkylcarboxylate compared to alkylsulfate of similar chain length.  相似文献   

20.
In environmental engineering, adsorption and desorption are phenomena commonly referred to as responsible for pollution dispersion, retention, or retardation in soils, aquifers, and hydrologic systems. They are also used to remove organic pollutants from water or odorous compounds in gas deodorization. Most often, the characterization of the aqueous adsorption systems that are of engineering interest involves a narrow adsorbate concentration range and low values of the adsorbate concentration. The practice is to use the Freundlich equation that best fits most data and is considered sufficient to design adsorption contactors. However, no physical or chemical meaning can be associated with the values taken by the parameters. The present paper gives a new way of analyzing adsorption data, using an extension of the Freundlich equation and the Gaussian distribution function that makes it possible to associate parameter values of this extension with the adsorbate–adsorbent normal interaction energy, its heterogeneity, and to some extent the adsorbate–adsorbate lateral interaction energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号