首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
真空度对碳纳米管场发射显示器的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了碳纳米管场发射环境下电子与气体碰撞的数理模型。通过实验观察和理论分析说明:碳纳米管场发射显示器在常规阴阳极间距下。在不同真空度下的显示均为电子轰击荧光粉发光所致,在低真空度下也无气体放电产生紫外光致荧光粉发光;当真空度太低时,气体电离会降低实际加在阴阳极间的电压,致使电子无法发射。通过电子与气体分子的碰撞频率计算可以说明,用气体压力与阴阳极间距的乘积作为标准衡量气体对场发射的影响比仅用真空度来衡量更为合理。场发射显示器阴阳极间距越大,对真空度的要求越高。  相似文献   

2.
要实现碳纳米管优异的场发射性能,或者在基体上直接生长碳纳米管,或者把碳纳米管组装到某一基体上。主要讨论了物理组装和化学组装两种组装方法并分析了这两种组装方法对碳纳米管场发射特性的影响。  相似文献   

3.
首先建立有限长两端开口、一端封闭、两端封闭的(5,5)型单壁碳纳米管的分子模型,采用原子替代方法得到氟掺杂结构.在此基础上,利用基于局域密度泛函理论的第一原理方法对其进行几何结构优化,再计算其结合能、费米能级和电子态密度等,从而讨论氟掺杂对三种碳纳米管场发射特性的影响.计算结果表明,掺氟后三种碳纳米管的费米能级明显升高,其中一端封闭的单壁碳纳米管的费米能级成线性增大,两端封闭的单壁碳纳米管的费米能级升幅最大,且费米能级处的电子态密度较高,说明两端封闭和一端封闭的单壁碳纳米管经氟掺杂后比两端开口的单壁碳纳米管将在场发射上有着更好的应用前景.  相似文献   

4.
利用酸化及球磨工艺对碳纳米管(Carbon Nanotubes,CNTs)进行表面改性及分散处理,通过丝网印刷技术制备碳纳米管阴极并真空封装碳纳米管背光源原型器件.透射电镜(TEM)及扫描电镜(SEM)分析表明,酸化及球磨处理后的碳纳米管表面产生管壁缺陷并分散均匀,有利于改善碳纳米管场发射性能.通过器件性能测试,亮度高达到5 000 cd·m-2,稳定发射35 h,发射电流无明显衰减.  相似文献   

5.
采用催化热解方法制备出镓掺杂碳纳米管,并利用丝网印刷工艺将其制备成纳米管薄膜.扫描电子显微镜观察表明,纳米管直径在20~50 nm之间.对此薄膜进行低场致电子发射测试表明,其场发射性能优于同样条件下未掺杂时的碳纳米管、碳氮纳米管和硼碳氮纳米管.当外加电场为1.1 V/μm,发射电流密度为50μA/cm2;当外电场增加到2.6 V/μm时,发射电子密度达到5 000μA/cm2.对其场发射机理进行探讨.  相似文献   

6.
碳纳米管阴极场发射平板显示器的真空封装   总被引:21,自引:0,他引:21  
通过采用传统的网版漏印工艺和低熔点玻璃焊料封接技术,实现了场发射显示器真空平板封装,这种封装稳定、可靠且成本低廉,同时,配套的弹性阴极装配技术,可以方便地对不同材料的阴极进行组装,形成二极管结构的场发射平板显示器,弹性装配技术 具有通过拼接得到大面积阴极的潜力,采用这套技术,已经研制出碳纳米管阴极场发射显示器样品。  相似文献   

7.
在有效质量近似的框架下,应用传递矩阵理论研究了势垒的非对称性对单电子隧穿几率的影响.结果表明:隧穿过程的势垒的形状对隧穿几率影响很大,势垒的对称性破坏的越严重,在低能区域发生共振隧穿的可能性越小.这些可以为设计和制造更加优化的共振隧穿器件提供一定的理论指导.  相似文献   

8.
在计算碳纳米管场发射显示器中电场强度时,为了提高计算效率,许多资料将三维空间的场发射简化为二维模型进行计算,为了比较分析使用二维模型和三维模型计算结果的差异,建立了二维模型单根碳纳米管、三维模型单根碳纳米管和单碳纳米墙3个模型,应用Ansoft Maxwell有限元数值仿真软件进行了仿真,计算结果表明:二维碳纳米管场发射模型的仿真结果代表的三维空间实际情况为碳纳米墙场发射,而不是真正的三维空间碳纳米管场发射。对于单根碳纳米管,用二维模型计算的碳纳米管尖端电场强度仅为三维空间碳纳米管尖端电场强度的1/4。  相似文献   

9.
用机械破碎方法提高印刷碳纳米管薄膜的场发射性能   总被引:8,自引:4,他引:8  
提出了一种可显著改善丝网印刷碳纳米管(CNTs)薄膜场发射特性的后处理方法,用机械压力通过隔离层对附着于CNTs表面的无机物进行原位破碎,并用高速气流清洁薄膜表面.同其他方法相比,机械破碎方法既不会在处理后的阴极表面留下残留物,也不会使薄膜受损.场发射特性测试表明,与未处理薄膜相比,经过处理的CNTs薄膜的开启场强从2.7V/μm降低到1.7V/μm,同样面积的薄膜(印刷面积为40mm×40mm)在4.2V/μm场强下的发射电流由70μA提高到了950μA,说明机械破碎处理对于提高薄膜的场发射特性有明显作用.该方法在碳纳米管场发射显示器的制作中具有很好的实际应用价值.  相似文献   

10.
掺氮碳纳米管阵列的制备及其场发射特性   总被引:6,自引:0,他引:6  
使用结构简单的单温炉设备,以二茂铁为碳源与催化剂,三聚氰胺为氮源在硅基底制备出了碳纳米管阵列。所得的碳纳米管为多壁结构,单根碳纳米管的平均直径为50nm,长度为15μm,有着很好的定向性。透射电子显微镜(TEM)和X射线光电子谱(XPS)分析表明所得的碳纳米管是氮掺杂的。利用场发射显微镜研究了掺氮碳纳米管阵列的平面场发射特性,相应的开启场强为1.60V/μm,场发射图像表明了其有较高的场发射点密度。  相似文献   

11.
根据Fowler-Nordheim的场致电子发射机制建立了顶端被催化剂Ni颗粒封闭的碳纳米管场致电子发射模型.利用该模型分析了Ni颗粒被移去前后碳纳米管场致电子发射性能的差异.分析结果表明Ni颗粒被移去前后碳纳米管场致电子发射性能的差异主要起源于碳纳米管顶端处电场强度的不同.  相似文献   

12.
不锈钢衬底碳纳米管薄膜的场发射特性   总被引:1,自引:3,他引:1  
不需要添加任何催化剂,直接在含有少量Ni和Cr成分的不锈钢衬底上,用微波等离子体化学气相沉积(MPCVD)方法沉积碳纳米管薄膜.在SEM下观察,生成的碳纳米管取向无序,但浓度大、杂质含量少、直径小且分布均匀,其直径在50~60 nm,为多壁碳纳米管.Raman光谱实验证实了此碳纳米管中存在大量缺陷.场发射实验表明,本样品的开启电压低,电子发射均匀,发射电流大.当用ITO玻璃作阳极且场强为11 V/μm时,电流密度可达到31 mA/cm2;当用荧光粉包覆的ITO玻璃作阳极且场强为6 V/μm时,电流密度可达到1.25 mA/cm2,这时的电子可稳定发射,使该样品变成良好的电子发射体.  相似文献   

13.
14.
基于非局部-梯度弹性理论,本文研究了碳纳米管中弯曲波的传播特性。利用理论方法与数值方法获得了在自由空间以及嵌入在弹性介质中的单壁碳纳米管中波的色散关系,研究了在不同的波数下尺度因子与弹性介质对单壁碳纳米管中波的色散关系的影响。数值结果表明弯曲波的波速在低波数下受弹性介质影响较大,在高波数下受尺度效应影响较大。  相似文献   

15.
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.  相似文献   

16.
碳纳米管材料的研究现状及发展趋势   总被引:2,自引:0,他引:2  
介绍了国内外碳管纳米管材料的发现历程,阐述了碳管纳米管材料的构造、形成机理、性能特点以及其应用的现状,简要分析了碳纳米管在纯化研究、导热性能的研究、力学性能和电学性能的开发利用等方面的发展趋势.  相似文献   

17.
以Fe/S iO2为催化剂,采用化学沉积法裂解乙炔制备了多壁碳纳米管。研究了预处理对碳纳米管储氢性能的影响。使用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TGA)和低温N2吸附(BET)对预处理前后的碳纳米管进行表征。结果表明:酸处理和热处理对碳纳米管的重量储氢容量有明显的影响,经酸处理后的碳纳米管样品在充氢压力10M Pa和30°C条件下的饱和重量储氢容量为1.90%,而粗样品只有0.4%,再经1 200°C,N2气氛下热处理后的重量储氢容量达到2.10%。  相似文献   

18.
研究了耦合效应对多壁碳纳米管电子结构的影响.采用π-轨道紧束缚模型.计算结果表明,层间耦合使多壁碳纳米管的能带分裂,能级简并度降低,同时使多壁碳纳米管的带隙减小,小的带隙确保了每层中都存在振动模式,多数激发态电子通过相邻管的快速振动转化能量而产生无辐射跃迁,使其荧光很难观察到.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号