首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Röpcke  J.  Revalde  G.  Osiac  M.  Li  K.  Meichsner  J. 《Plasma Chemistry and Plasma Processing》2002,22(1):139-159
Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and three stable molecules, CH4, C2H2 and C2H6, in radio frequency plasmas (f=13.56 MHz) containing hexamethyldisiloxane (HMDSO). The methyl radical concentration and the concentration of the stable hydrocarbons, produced in the plasma, have been measured in pure HMDSO discharges and with admixtures of Ar, while discharge power (P=20–200 W), total gas pressure (p=0.08–0.6 mbar), gas mixture and total gas flow rate (=1–10 sccm) were varied. The methyl radical concentration was found to be in the range of 1013 molecules cm-3, while methane and ethane are the dominant hydrocarbons with concentrations of 1014–1015 mol cm-3. Conversion rates to the measured stable hydrocarbons (RC(CxHy): 2×1012–2×1016 molecules J-1 s-1) could be estimated in dependence on power, flow, mixture and pressure. Under the used experimental conditions a maximum deposition rate of polymer layers of about 400 nm min-1 has been found.  相似文献   

2.
Ab initoand density functional theory (DFT) methods were used to study the tautomers of barbituric acid in the gas phase and in a polar medium. In the gas phase, the tautomers were optimized at the HF/6-31G*, MP2/6-31G*and B3LYP/6-31G*, B3PW91/6-31G*levels of theory. The self-consistent reaction field theory (SCRF) at the HF/6-31G*level of theory has been used to optimize the tautomers in a polar medium. The relative stability of the tautomers was compared in the gaseous and polar mediums. The ability of maximum hardness principle to predict the stable tautomer has been studied. The 13C-NMR chemical shift for carbon atoms in the tautomers was calculated and the results are discussed.  相似文献   

3.
Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 × 10–7. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level.  相似文献   

4.
《Analytical letters》2012,45(7):1325-1338
Abstract

This paper presents the capability of using molecules labelled with 13 C and of measuring them by gas chromatography coupled to an MIP. The sensitivity of the detection of this stable carbon isotope has been optimised using non steroid anti inflammatory drugs such as Fenoprofen, Flurbiprofen, Ketoprofen and Diclofenac and applying a four factors experimental design. This work shows that the main factors acting on the sensitivity of the 13 C detection are the flow rates of hydrogen and helium (plasma gas). The linearity was demonstrated in the range from 50 to 300 pg of 13 C. The limit of detection calculated according to various methods (IUPAC, Oppenheimer and Quimby - Sullivan) gave the following results: 2 pg/μl, 12 pg/μl and 0.1 pg/s respectively. These results show that 13 C atomic emission is quite a specific and sensitive mode of detection of 13 C labelled molecules after gas chromatographic separation.  相似文献   

5.
A new isomer of diazomethane 1 , the nitrile imine, HCNNH ( 2 ) is reported to be a stable molecule in the gas phase. Upon neutralizing the α-distonic HCNNH+ cation in a beam experiment, this long-time predicted ylide can be generated. The experiments are supported by theoretical calculations (DFT/HF hybride method) on the neutral and cationic diazomethane 1 , nitrile imine 2 , and N-isocyano amine 3 as well as the transition states for their interconversion.  相似文献   

6.
Semiconducting Group 14 clathrates are inorganic host–guest materials with a close structural relationship to gas hydrates. Here we utilize this inherent structural relationship to derive a new class of porous semiconductor materials: noble gas filled Group 14 clathrates (Ngx[M136], Ng=Ar, Kr, Xe and M=Si, Ge, Sn). We have carried out high‐level quantum chemical studies using periodic Local‐MP2 (LMP2) and dispersion‐corrected density functional methods (DFT‐B3LYP‐D3) to properly describe the dispersive host–guest interactions. The adsorption of noble gas atoms within clathrate‐II framework turned out to be energetically clearly favorable for several host–guest systems. For the energetically most favorable noble gas filled clathrate, Xe24[Sn136], the adsorption energy is ?52 kJ mol?1 per guest atom at the LMP2/TZVPP level of theory, corresponding to ?9.2 kJ mol?1 per framework Sn atom. Considering that a hypothetical guest‐free Sn clathrate‐II host framework is only 2.6 kJ mol?1 per Sn atom less stable than diamond‐like α‐Sn, the stabilization resulting from the noble gas adsorption is very significant.  相似文献   

7.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

8.
Multiply charged negative ions are seldom stable in the gas phase. Electrostatic repulsion leads either to autodetachment of electrons or fragmentation of the parent ion. With a binding energy of the second electron at 0.9 eV, B12H122? is a classic example of a stable dianion. It is shown here that ligand substitution can lead to unusually stable multiply charged anions. For example, dodecacyanododecaborate, B12(CN)122?, created by substituting H by CN is found to be highly stable with the second electron bound by 5.3 eV, which is six times larger than that in the B12H122?. Equally important is the observation that CB11(CN)122?, which contains one electron more than needed to satisfy the Wade‐Mingos rule, is also stable with its second electron bound by 1.1 eV, while CB11H122? is unstable. The ability to stabilize multiply charged anions in the gas phase by ligand manipulation opens a new door for multiply charged species with potential applications as halogen‐free electrolytes in ion batteries.  相似文献   

9.
在B3LYP/6-311++G**水平上用极化连续介质模型(PCM)系统研究了金属离子(M+/2+=Na+,K+,Ca2+,Mg2+,Zn2+)和十三种鸟嘌呤异构体形成的配合物GnxM+/2+(n为鸟嘌呤异构体的编号,x表示M+/2+与鸟嘌呤异构体的结合位点)在气(g)液(a)两相中的稳定性顺序.着重探讨了液相中配合物的稳定性差异,并且从溶质-溶剂效应、结合能、形变能及异构体的相对能量等几个方面分析了造成稳定顺序发生变化的原因.报道了溶液中这五种金属离子与鸟嘌呤异构体结合形成的六种基态配合物:aG1N2,N3Na+,aG1N2,N3K+,aG1O6,N7Ca2+,aG1N2,N3Mg2+(aG1O6,N7Mg2+),aG2N3,N9Zn2+.可以看出,除了在Zn2+配合物中鸟嘌呤异构体为G2外,构成其余四种金属离子配合物的鸟嘌呤异构体都是G1,但结合位点不同.同时对气相中各类配合物稳定性也进行了系统的排序,并报道了几种较稳定的配合物,如:gG3N1,O6K+,gG5N1,O6K+,gG3N1,O6Ca2+/Mg2+,gG4O6,N7Ca2+/Mg2+.  相似文献   

10.
Carbenes are reactive molecules of the form R1 C̈ R2 that play a role in topics ranging from organic synthesis to gas‐phase oxidation chemistry. We report the first experimental structure determination of dihydroxycarbene (HO C̈ OH), one of the smallest stable singlet carbenes, using a combination of microwave rotational spectroscopy and high‐level coupled‐cluster calculations. The semi‐experimental equilibrium structure derived from five isotopic variants of HO C̈ OH contains two very short CO single bonds (ca. 1.32 Å). Detection of HO C̈ OH in the gas phase firmly establishes that it is stable to isomerization, yet it has been underrepresented in discussions of the CH2O2 chemical system and its atmospherically relevant isomers: formic acid and the Criegee intermediate CH2OO.  相似文献   

11.
Carbenes are reactive molecules of the form R1? C?? R2 that play a role in topics ranging from organic synthesis to gas‐phase oxidation chemistry. We report the first experimental structure determination of dihydroxycarbene (HO? C?? OH), one of the smallest stable singlet carbenes, using a combination of microwave rotational spectroscopy and high‐level coupled‐cluster calculations. The semi‐experimental equilibrium structure derived from five isotopic variants of HO? C?? OH contains two very short CO single bonds (ca. 1.32 Å). Detection of HO? C?? OH in the gas phase firmly establishes that it is stable to isomerization, yet it has been underrepresented in discussions of the CH2O2 chemical system and its atmospherically relevant isomers: formic acid and the Criegee intermediate CH2OO.  相似文献   

12.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

13.
The infrared (3500 to 40 cm−1) and Raman (3500 to 10 cm−1) spectra have been recorded for the gaseous and solid phases of ethyldichlorophosphine, CH3CH2PCl2, and CD3CD2PCl2. Additionally, the Raman spectra of the liquids were recorded and qualitative depolarization values were obtained. In the spectrum of the gas the gauche conformer is predominant with about 65% abundance whereas in the spectrum of the liquid at ambient temperature the amount of gauche conformer is reduced compared to the gas phase and at −100°C the trans conformer predominates. The trans conformer is the more stable species in the solid. A variable temperature study was carried out on the Raman spectrum of the liquid and ΔH and ΔS values of 190 ± 30 cm−1 (543 ± 87 cal/mol) and 2.86 ± 0.3 eu were determined, respectively, with the trans conformer being more stable. Similar variable temperature studies have been carried out on a number of conformer peaks in the infrared spectrum of the gas and a ΔH value of 53 ± 38 cm−1 (152 ± 110 cal/mol) was obtained, again with the trans conformer being more stable. All the fundamental modes of both conformers have been assigned utilizing band contours, depolarization values, isotopic shift factors and group frequencies. A normal coordinate calculation has been carried out utilizing a modified valence force field to calculate the frequencies and potential energy distribution for both conformers. The barriers to methyl rotation of the trans and gauche conformers are 2.2 ± 0.1 and 2.3 ± 0.1 kcal/mol, respectively. These results are compared to similar quantities for some corresponding molecules.  相似文献   

14.
The interaction of bare iron mono‐ and dications with hydrogen peroxide in the gas phase is studied by ab initio calculations employing the B3LYP/6‐311+G* level of theory. For the monocation, the quartet and sextet coordination complexes Fe(H2O2) are high‐energy isomers that easily interconvert to the more stable iron dihydroxide monocation Fe(OH) and hydrated iron oxide (H2O)FeO+ (quartet) or dissociate into FeOH++OH. (sextet). On the dication surface, however, the order of stabilities is reversed in that Fe(H2O2)2+ (quintet) corresponds to the most stable doubly charged species, while the formal FeIV compounds Fe(OH) and (H2O)FeO2+ are higher in energy.  相似文献   

15.
Ion mobility spectrometry (IMS) is an analytical technique that separates gas‐phase ions drifting under an electric field according to their size to charge ratio. We used electrospray ionization‐drift tube IMS coupled to quadrupole mass spectrometry to measure the mobilities of glucosamine (GH+) and caffeine (CH+) ions in pure nitrogen or when the shift reagent (SR) 2‐butanol was introduced in the drift gas at 6.9 mmol m−3. Binding energies of 2‐butanol‐ion adducts were calculated using Gaussian 09 at the CAMB3LYP/6‐311++G(d,p) level of theory. The mobility shifts with the introduction of 2‐butanol in the drift gas were −2.4% (GH+) and −1.7% (CH+) and were due to clustering of GH+ and CH+ with 2‐butanol. The formation of GBH+ was favored over that of CBH+ because GBH+ formed more stable hydrogen bonds (83.3 kJ/mol) than CBH+ (81.7 kJ/mol) for the reason that the positive charge on CH+ is less sterically available than on GH+ and the charge is stabilized by resonance in CH+. These results are a confirmation of the arguments used to explain the drift behavior of these ions when ethyl lactate SR was used (Bull Kor Chem Soc 2014, 1023–1028). This study is a step forward to predict IMS separations of overlapping peaks in IMS spectra, simplifying a procedure that is trial and error by now.  相似文献   

16.
To obtain reliable estimates of the quantities and rates of the gas production in L/ILW a series of measurements was carried in the last 7 years in Hungary. The typical gas production rates were 0.05–0.2 STP litre gas/day for CO2 and CH4 generation, and less for H2. No explosive gas mixture was indicated in the L/ILW drums during the investigated storage period. Compositions of headspace gases in closed L/ILW vaults were in agreement with gas generation processes observed in L/ILW drums. The stable carbon isotope measurements show that the main source of the CO2 gas is the degradation of organic matter and indicates microbial degradation processes as the main sources of CH4. Typical tritium activity concentrations were <10 Bq/l gas in the drums and <1,000 Bq/l gas in the vaults. Typical 14C activity values of the headspace gases were <2.0 Bq/l gas in the drums and <1,000 Bq/l gas in the vaults.  相似文献   

17.
The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1 , in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2 , in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol?1. To resolve this apparent discrepancy the gas‐phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1 . DFT calculations highlight that although 1 is thermodynamically less stable than 2 , it is kinetically stable with respect to rearrangement.  相似文献   

18.
A facile strategy was reported to synthesize and assemble a stable ultrathin film of Ni(OH)2 nanoparticles at gas/liquid interface where the aqueous phase contained Ni2+ and the organic phase was composed of triethylamine toluene solution. The ultrathin film of Ni(OH)2 nanoparticles that precipitated at the interface was transferred onto the electrode surface for the electrocatalysis of bio-thiols and selective electroanalysis of cysteine. The preparation of Ni(OH)2 ultrathin film and its transfer to an electrode substrate is very simple. The obtained Ni(OH)2 ultrathin film modified electrodes are stable, showing high electrochemical oxidation toward bio-thiols and good selectivity toward cysteine in phosphate buffered solution of pH 7.5.  相似文献   

19.
Cryogenic or heating methods have been widely used in experiments involving gas purification or isolation and in studying phase changes among solids, liquids, or gases for more than a century. Thermal gradients are often present in these routine processes. While stable isotopes of an element are known to fractionate under a thermal gradient, the largely diffusion‐driven fractionation is assumed to be entirely mass‐dependent. We report here, however, that distinct non‐mass‐dependent oxygen isotope fractionation can be generated when subjecting rarefied O2 gas in a closed system to a simple thermal gradient. The Δ17O value, a measure of the 17O anomaly, can be up to ?0.51‰ (standard deviation (s.d.) 1σ = 0.03) in one of the temperature compartments. The magnitude of the 17O anomalies decreased with increasing initial gas pressures. The authenticity of this phenomenon is substantiated by a series of blank tests and isotope mass‐balance calculations. The observed anomalies are not the result of H2O contamination in samples or in isotope ratio mass spectrometry. Our finding calls attention to the importance of thermal gradient‐induced isotope fractionation and to its implications in laboratory procedures, stable isotope geochemistry, and the physical chemistry of rarefied gases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
张慧  薛英  谢代前  鄢国森 《化学学报》2005,63(9):791-796
采用从头算方法在MP2/6-31+G*水平上研究了2-羟基咪唑分子在孤立分子和一水合物的异构体的相对稳定性和可能的质子迁移反应, 分析了一个水分子的参与对2-羟基咪唑分子异构体的相对稳定性和质子迁移速率的影响, 采用Monte Carlo模拟方法研究了反应体系在水溶液中反应的溶剂化效应. 结果表明: 2-羟基咪唑分子的孤立分子和一水合物的最稳定异构体相同, 都为酮式. 直接质子迁移反应在水溶液中活化能垒有轻微增加, 但产物能量得到降低; 水助催化质子迁移反应在水溶液中的活化能垒和产物能量都得到明显降低. 综合气相和水相的计算结果, 2-羟基咪唑水助催化的质子迁移反应较易进行, 且在水溶液中进行容易, 可以很容易被实验观察到.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号