首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In the present work we elucidate the thermodynamic mechanisms of femtosecond(fs)laser ablation of amorphous polystyrene by means of molecular dynamics(MD)simulations.The effects of extrinsic parameter of laser pulse intensity and intrinsic parameter of molecular architecture on the laser ablation are further studied.Simulation results show that the laser ablation-induced polymeric material removal is achieved by evaporation from the surface and expansion within the bulk.Furthermore,inter-chain sliding and intra-chain change also play important roles in the microscopic deformation of the material.It is found that both the laser pulse intensity and the arrangement of phenyl groups have significant influence on the fs laser ablation of polystyrene.  相似文献   

3.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

4.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

5.
The dynamics of the early stages of the ablation plume formation and the mechanisms of cluster ejection are investigated in large-scale molecular dynamics simulations. The cluster composition of the ablation plume has a strong dependence on the irradiation conditions and is defined by the interplay of a number of processes during the ablation plume evolution. At sufficiently high laser fluences, the phase explosion of the overheated material leads to the formation of a foamy transient structure of interconnected liquid regions that subsequently decomposes into a mixture of liquid droplets, gas-phase molecules, and small clusters. The ejection of the largest droplets is attributed to the hydrodynamic motion in the vicinity of the melted surface, especially active in the regime of stress confinement. Spatially resolved analysis of the dynamics of the plume formation reveals the effect of segregation of the clusters of different sizes in the expanding plume. A relatively low density of small/medium clusters is observed in the region adjacent to the surface, where large clusters are being formed. Medium-size clusters dominate in the middle of the plume and only small clusters and monomers are observed near the front of the expanding plume. Despite being ejected from deeper under the surface, the larger clusters in the plume have substantially higher internal temperatures as compared to the smaller clusters. The cluster-size distributions can be relatively well described by a power law Y(N)∼N with exponents different for small, up to ∼15 molecules, and large clusters. The decay is much slower in the high-mass region of the distribution. Received: 13 October 2001 / Accepted: 18 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-434/982-5660, E-mail: lz2n@virginia.edu  相似文献   

6.
Matrix-assisted pulsed laser evaporation (MAPLE) is a prominent member of a broad and expanding class of laser-driven deposition techniques where a matrix of volatile molecules absorbs laser irradiation and provides the driving force for the ejection and transport of the material to be deposited. The mechanisms of MAPLE are investigated in coarse-grained molecular dynamic simulations focused on establishing the physical regimes and limits of the molecular transfer from targets with different structures and compositions. The systems considered in the simulations include dilute solutions of polymer molecules and individual carbon nanotubes (CNTs), as well as continuous networks of carbon nanotubes impregnated with solvent. The polymer molecules and nanotubes are found to be ejected only in the ablation regime and are incorporated into matrix-polymer droplets generated in the process of the explosive disintegration of the overheated matrix. The ejection and deposition of droplets explain the experimental observations of complex surface morphologies in films deposited by MAPLE. In simulations performed for MAPLE targets loaded with CNTs, the ejection of individual nanotubes, CNT bundles, and tangles with sizes comparable or even exceeding the laser penetration depth is observed. The ejected CNTs align along the flow direction in the matrix plume and tend to agglomerate into bundles at the initial stage of the ablation plume expansion. In a large-scale simulation performed for a target containing a network of interconnected CNT bundles, a large tangle of CNT bundles with the total mass of 50 MDa is separated from the continuous network and entrained with the matrix plume. No significant splitting and thinning of CNT bundles in the ejection process is observed in the simulations, suggesting that fragile structural elements or molecular agglomerates with complex secondary structures may be transferred and deposited to the substrate with the MAPLE technique.  相似文献   

7.
Dynamics of the ejected material in ultra-short laser ablation of metals   总被引:1,自引:0,他引:1  
A molecular dynamics model is applied to study the formation and the early stages of ejection of material in ultra-short laser ablation of metals in vacuum. Simulations of the ablation process for iron at a pulse duration of 0.1 ps and at different laser fluences are performed. Different features of the ejection mechanism are observed below, near, and above the ablation threshold. The last is estimated as approximately 0.1 J/cm2. The structure of the ablated material is found to depend on the applied laser fluence. The expanded plume consists mainly of large clusters at fluences near to the threshold. With the increase of the laser fluence the presence of the large clusters decreases. Clear spatial segregation of species with different sizes is observed in the direction normal to the surface several tens of picoseconds after the laser pulse onset. The angular distribution of the ejected material is estimated for different regimes of material removal. Above the ablation threshold the distribution is forward peaking. PACS 79.20.Ds; 52.38.Mf; 02.70.Ns; 81.05.Bx  相似文献   

8.
We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.  相似文献   

9.
10.
The mechanisms of photomechanical spallation are investigated in a large-scale MD simulation of laser interaction with a molecular target performed in an irradiation regime of inertial stress confinement. The relaxation of laser-induced thermoelastic stresses is found to be responsible for the nucleation, growth, and coalescence of voids in a broad sub-surface region of the irradiated target. The depth of the region subjected to void evolution is defined by the competition between the evolving tensile stresses and thermal softening of the material due to the laser heating. The initial void volume distribution obtained in the simulation of laser spallation can be well described by a power law. A similar volume distribution is obtained in a series of simulations of uniaxial expansion of the same molecular system performed at a strain rate and temperature realized in the irradiated target. Spatial and time evolution of the laser-induced pressure predicted in the MD simulation of laser spallation is related to the results of an integration of a thermoelastic wave equation. The scope of applicability of the continuum calculations is discussed. PACS 79.20.Ds; 61.80.Az; 02.70.Ns; 83.60.Uv  相似文献   

11.
The selective ablation of thin (∼100 nm) SiO2 layers from silicon wafers has been investigated by applying ultra-short laser pulses at a wavelength of 800 nm with pulse durations in the range from 50 to 2000 fs. We found a strong, monotonic decrease of the laser fluence needed for complete ablation of the dielectric layer with decreasing pulse duration. The threshold fluence for 100% ablation probability decreased from 750 mJ/cm2 at 2 ps to 480 mJ/cm2 at 50 fs. Significant corruption of the opened Si surface has been observed above ∼1200 mJ/cm2, independent of pulse duration. By a detailed analysis of the experimental series the values for melting and breaking thresholds are obtained; the physical mechanisms responsible for the significant dependence on the laser pulse duration are discussed.  相似文献   

12.
During the last decade, femtosecond laser has been used for micro-machining of various materials. In this work, the phase change phenomena during femtosecond laser ablation are investigated using molecular dynamics (MD) simulation. The process of femtosecond laser ablation of nickel is calculated. The temperature and stress history, and the generation and growth of gas bubbles are traced. For different laser pulse fluences, the material ablation process is analysed to reveal the effect of temperature and stress. PACS 02.70.Ns; 42.62.-b; 64.60.Ht  相似文献   

13.
A detailed understanding of the physical determinants of the ablation rate in multiple nanosecond laser pulses regime is of key importance for technological applications such as patterning and pulsed-laser deposition. Here, theoretical modeling is employed to investigate the ablation of thick metallic plates by intense, multiple nanosecond laser pulses. A new photo-thermal model is proposed, in which the complex phenomena associated to the ablation process are accounted for as supplementary terms of the classical heat equation. The pulsed laser ablation in the nanosecond regime is considered as a competition between thermal vapourization and melt ejection under the action of the plasma recoil pressure. Computer simulations using the photo-thermal model presented here and the comparison of the theoretical results with experiment indicate two different mechanisms that contribute to the decrease of the ablation efficiency. First, during the ablation process the vapour/plasma plume expanding above the irradiated target attenuates the laser beam that reaches the sample, leading to a marked decrease of the ablation efficiency. Additional attenuation of the laser beam incident on the sample is produced due to the heating of the plasma by the absorption of the laser beam into the plasma plume. The second mechanism by which the ablation efficiency decreases consists of the reduction of the incident laser intensity with the lateral area, and of the melt ejection velocity with the depth of the hole.  相似文献   

14.
超短脉冲照射下氟化锂的烧蚀机理及其超快动力学研究   总被引:7,自引:0,他引:7  
研究了超短脉冲激光照射下LiF晶体的破坏机理及其超快动力学过程,利用扫描电镜和原子力显微镜等测试手段,观测了飞秒激光照射下LiF晶体的烧蚀形貌。利用烧蚀面积与激光脉冲能量的对数关系确定了LiF晶体的破坏阈值,并利用非线性玻璃棒展宽脉宽,得到了800nm激光作用下LiF破坏阈值对激光脉宽(50~1000fs)的依赖关系;利用抽运一探针超快探测平台,探测了LiF烧蚀过程中反射率的变化。采用雪崩击穿模型,并根据晶体材料反射率与材料的介电常量的依赖关系,通过数值计算,模拟了材料烧蚀阈值与脉宽的依赖关系及材料激发过程中反射率的变化关系。结果表明,理论结果与实验结果符合较好。讨论了飞秒激光照射下LiF晶体中导带电子数密度的变化规律,并解释了相应的实验结果。  相似文献   

15.
飞秒激光在空气和水中对硅片烧蚀加工的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王锐  杨建军  梁春永  王洪水  韩伟  杨阳 《物理学报》2009,58(8):5429-5435
采用1 kHz,800 nm,50 fs—24 ps的钛宝石激光脉冲对单晶硅样品在空气和水溶液环境中的烧蚀加工特性进行了研究.实验观察到了超短脉冲激光在空气氛围中烧蚀形成的双层环状结构,分析揭示了加工区域中心和边缘的烧蚀物理机制分别为热熔化和库仑爆炸,并测量了双层环状结构半径随入射激光能量、脉冲数及持续时间等的变化关系,结果表明获取较大深-宽比的加工效果需选择小能量脉冲激光的多次作用.在水溶液环境中,实验发现飞秒激光在样品表面诱导产生了亚微米量级的多孔状结构,而皮秒激光则更容易实现对硅表面的非热性去除.这是由于激光诱导的光机械应力和空泡效应随脉冲宽度变大而增强所致,在实验上确立了区分这两种不同加工状态的临界脉冲宽度. 关键词: 飞秒激光 硅片 激光加工  相似文献   

16.
We have investigated ultrashort laser micromachining of metals, both from the point of view of the basic physical processes, and the technological implications. The process of hole drilling of Ni with ≈300 fs SHG (λ = 527 nm) Nd-glass and Al samples with 100 fs Ti:sapphire (λ = 800 nm) laser pulses, respectively, has been experimentally addressed by using time-gated optical emission spectroscopy of the ablated material and SEM analysis of the targets. The ablation process has also been analyzed by classical, molecular dynamics (MD) simulations, by using a Morse potential to describe the interaction between the atoms, and taking into account the electron heat diffusion contribution. The dependence of the ablation depth on laser fluence, as measured by SEM analysis, is in good agreement with the numerical simulations and is also well correlated with the optical emission yield of the expanding plume.  相似文献   

17.
Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/e2 diameter). The sample was translated at a linear speed of 400 μm/s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.  相似文献   

18.
The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm2 (130 fs) up to ∼1500 mJ/cm2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.  相似文献   

19.
超短脉冲激光照射下氧化铝的烧蚀机理   总被引:1,自引:0,他引:1       下载免费PDF全文
利用烧蚀面积与激光脉冲能量的线性关系,确定了氧化铝的破坏阈值,同时采用散射光探测法,研究了800和400nm超短脉冲激光作用下氧化铝的破坏阈值对激光脉宽的依赖关系,并探讨了氧化铝的烧蚀规律. 利用雪崩击穿模型,解释了实验结果,并讨论了导带电子光吸收机理. 关键词: 飞秒激光 氧化铝 破坏阈值 雪崩模型  相似文献   

20.
Hui-Ni Du 《光谱学快报》2013,46(8):556-562
We propose a method to extend the high-order harmonics plateau and generate an isolated sub-10-as pulse by adding a weak control pulse (10 fs, 1600 nm) to modify a two-color laser field (5 fs, 800 nm; 10 fs, 400 nm). The numerical results show that the plateau is extended obviously in the three-color laser field regime. Additionally, the ionization rate and classical returning kinetic-energy maps are calculated to better understand the physical origin of the high-order harmonics generation (HHG). By means of the ionization probability and the time-frequency distributions, more features of the HHG are revealed. Furthermore, our simulations show that the width of the plateau and the relative conversion efficiency of the harmonic spectra are highly dependent on the relative phase. Finally, by adjusting the relative phase and superposing a properly selected range of the HHG spectrum, an isolated attosecond pulse with a duration of 7 as is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号