首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of fiber reinforced plastic (FRP) concrete elements under service conditions is analyzed. Taking into account the real constitutive law of materials and local bond-slip law which adequately describes the interaction between the FRP reinforcement and concrete, a numerical procedure is proposed for obtaining moment-curvature relationships for a cracked beam element. Using the moment-curvature laws, the load-deflection analysis of FRP concrete beams is carried out. To study the influence of geometric and mechanical parameters, a numerical investigation was carried out and the results obtained were compared with those from other methods and Codes. The results of the experimental investigation are described and compared with those of the proposed procedure; the comparison shows good agreement between the theoretical and experimental results.  相似文献   

2.
The paper is devoted to the analysis of cracking and deformability of concrete tension members reinforced with fiber-reinforced polymer (FRP) rods. A theoretical nonlinear model, derived from a cracking analysis founded on slip and bond stresses, is adopted for evaluating the crack width, crack spacing, and elongation of tension members. The procedure takes into account the local bond-slip law, experimentally determined by means of pullout tests, and allows us to evaluate the influence of tensile stiffening. The analysis is performed with considering all parameters influencing the behavior of tension members, such as the concrete strength, the kind of FRP rebars, the surface treatment of FRP rebars, and the concrete cover thickness. The theoretical predictions are compared with available experimental results, obtained on cylindrical concrete specimens reinforced with carbon FRP (CFRP) rods, and with predictions of the traditional models usually adopted for design purposes.  相似文献   

3.
The behavior of fiber reinforced plastic (FRP) concrete elements under service conditions is analyzed. Taking into account the real constitutive law of materials and local bond-slip law which adequately describes the interaction between the FRP reinforcement and concrete, a numerical procedure is proposed for obtaining moment-curvature relationships for a cracked beam element. Using the moment-curvature laws, the load-deflection analysis of FRP concrete beams is carried out. To study the influence of geometric and mechanical parameters, a numerical investigation was carried out and the results obtained were compared with those from other methods and Codes. The results of the experimental investigation are described and compared with those of the proposed procedure; the comparison shows good agreement between the theoretical and experimental results.Department of Materials Science, University of Lecce, Via per Arnesano, 73100 Lecce, Italy. Published in Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 163–172, March–April, 1999.  相似文献   

4.
The paper deals with evaluation of the bond performance between a CFRP plate and concrete with respect to various compressive strengths of concrete and bond lengths of the CFRP plate as parameters. To consider stress conditions in the tensile zone of reinforced concrete (RC) structures, double-lap axial tension tests were conducted for eight specimens with CFRP plates bonded to concrete prisms. In addition, a simple linear bond-slip model for the CFRP plate/concrete joints, developed from the bond tests, was used. To verify the model proposed, a total of seven RC beams were strengthened with CFRP plates and tested in flexure employing various bond lengths, strengthening methods, and numbers of CFRP plates. A nonlinear finite-element analysis, with the bond–slip model incorporated in the DIANA program, was performed for the strengthened RC beams. Also, the results of flexural test and analytical predictions are found to be in close agreement in terms of yield and ultimate loads and ductility.  相似文献   

5.
To study the effects of bamboo fiber and steel wire mesh on the flexural ductility of basalt fiber reinforced polymer(BFRP)bar concrete beams, 7 BFRP bar concrete beams with bamboo fiber and steel wire mesh were tested with different bamboo fiber lengths (0 mm, 30 mm and 45 mm) and different steel wire mesh layout ranges (0, 1/2 maximum bending moment point layout and full beam length layout). The flexural failure tests of the 7 beams were carried out, and the initial crack loads, the crack developments, the ultimate loads and the deformations were detected. The effects of the fiber length and the wire mesh layout range on the crack resistance and the deformation resistance of the specimens were analyzed based on the test data. With the function model, the equivalent yield points of the 7 test beams were obtained, and their ductility coefficients were calculated. The results show that, the addition of bamboo fiber and steel wire mesh increases the cracking loads of BFRP bar concrete beams by 12%~68%, decreases the crack spacings and the crack length development speed, reduces the test beam deformation under the same load, and increases the ductility coefficient by 1.58%~31.75%. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

6.
为了进一步简化HB-FRP(hybrid bonding FRP)加固技术的粘结滑移模型, 并基于先期研究的HB-FRP粘结滑移分区模型开展研究.在假定HB-FRP加固技术的粘结滑移统一模型表达式的基础上,推导了钢扣件部位的粘结应力分布系数.将HB-FRP加固作用分为普通FRP粘结性能和钢扣件产生的粘结性能两部分,依据能量方法,推导了FRP张拉力与滑移量的表达式.基于理论分析和数值求解,研究了界面滑移量的分布特征.基于模型试验测试结果,研究了粘结滑移统一模型中的待定系数表达式.研究结果表明:建立的HB-FRP加固混凝土结构的粘结滑移统一模型能有效预测加固界面的剥离承载力及有效粘结长度.  相似文献   

7.
The paper deals with experiments on single edge notched beams, subjected to 2D and 3D stress states, for the validation of material models for cracking of plain concrete. Both, the test setup and the test results, mainly consisting of load – displacement curves and crack paths and crack surfaces, are described briefly. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
混凝土由于水分蒸发、干缩、泌水以及骨料与砂浆变形不一致等原因会导致骨料与砂浆的界面层中产生弧形裂纹,从而对混凝土开裂强度产生很大影响.从细观角度将混凝土视作由粗骨料和水泥砂浆组成的两相复合材料,并将界面层视为粗骨料与水泥砂浆的接触层进行分析.首先基于相互作用直推估计(interaction direct derivative, IDD)法,考虑混凝土中骨料颗粒的相互作用,将施加在混凝土表征体积元的远场外荷载等效为无限大基体中含单一骨料的等效外荷载.然后,将等效外荷载转化为最大和最小主应力,基于断裂力学理论得到界面层中弧形裂纹的应力强度因子,并根据复合型裂纹幂准则判断弧形裂纹是否发生开裂,进而来研究混凝土开裂强度的变化规律.通过与数值模拟结果的比较,验证了界面弧形裂纹应力强度因子解析解的有效性,参数分析结果表明,当裂纹与最大主应力垂直或与最小主应力呈45°夹角时,骨料周围弧形裂纹最易发生开裂破坏.随着裂纹长度增加,混凝土受拉和受压开裂强度先减小后增大,且均存在最不利的裂纹长度.混凝土开裂强度随着骨料体积分数的增加而增大,随着骨料粒径的增大而减小.在裂纹长度较小时,增大骨料的弹性模量有利于提高混凝土开裂强度.骨料周围承受同号应力可以提高混凝土的开裂强度,反之,异号应力会降低开裂强度.  相似文献   

9.
The strength and fracture mechanism of the contact zone between a carbon-fiber-reinforced plastic (CFRP) and concrete in flexural structural elements is investigated. Two methods for calculating the shear force in the contact zone are considered, one of which takes into account the compliance of the zone and gives results agreeing rather well with experimental data for beams, regardless of the way the CFRP is fastened to concrete. The method of shear stresses is good for beams with in significant shear strains between CFRP and concrete. A method allowing for hardening of the contact zone is suggested. It is shown that the fracture mechanism of the zone depends on the way of fastening the CFRP and the depth the adhesive penetrates into concrete. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 687–700, September–October, 2007.  相似文献   

10.
A review of some cracking and deflection models used for a structural analysis of FRP-strengthened reinforced concrete beams is presented, and, with reference to short-term deflections, a comparison between model predictions and experimental results is made. By using predictions provided by a nonlinear model derived from a cracking analysis, founded on slip and bond stresses, and experimental results for 63 FRP-strengthened beams, a modification of the well-known semi-empirical Branson’s formula to compute beam deflections is proposed. Finally, the efficiency of the modification is evaluated by comparison with experimental results.  相似文献   

11.
We present an effective cohesive discrete crack method in the context of the Reproducing Kernel Particle Method (RKPM) in order to study fracture of concrete structures. The discrete crack approach is based on the visibility method and a simple node splitting scheme. We also present an effective implementation of the visibility method and an iteration free algorithm by including the cohesive force term directly into the stiffness equations. The crack is represented by straight-line segments and the cohesive zone model is employed to model the post-localization behavior of concrete. The method is applied to several examples involving mode I and mixed-mode fracture. These results are compared to experimental data and show good agreement.  相似文献   

12.
This paper deals with three-dimensional nonlinear finite element analysis of concrete structures. A new three-parameter failure criterion, formulated in terms of three stress invariants, is suggested for plain concrete. The criterion can accurately describe available experimental data throughout the stress range from tensile stresses to high compressive stresses. The constitutive matrix of a cracked concrete element is deduced by coupling the normal and tangential effects of crack bands. The modeling of reinforcement and its interaction with concrete are also discussed. Numerical examples of plain and reinforced concrete are presented. The computational results compare satisfactorily with experimental data.This research is supported by the Chinese National Committee of Science and Technology and the Chinese National Bureau of Nuclear Safety.  相似文献   

13.
Beams of cement-based composites reinforced with different types of meshes usually do not have stirrups. With good anchoring of the longitudinal tensile reinforcement, such beams break after the development of a critical inclined crack caused by the principal tensile stresses. In this paper, the mechanics of development of such cracks is studied. The results of theoretical investigation based on the structural mechanics of laminates are compared with the results of experimental testing of cement-based composite beams reinforced with punched steel grids.  相似文献   

14.
Several approaches are investigated to model interior reinforced concrete waffle-flat-plate-column connections. A model is proposed that provides very good results with reasonable low computational cost. The proposed model is validated with the experimental results obtained on a 3/5 scale specimen, subjected to quasi-static in cyclic loads up to collapse. To this end, the non-linear advanced theory of reinforced concrete is applied on a three-dimensional finite element model and non-linear analysis are conducted. Both fiber and layer elements are used for the one-dimensional and bi-dimensional components respectively. The main results of the simulation were: (i) the capacity curve obtained through out a push-over analysis with displacement control, (ii) the hysteretic curves of the slab, and (iii) the crack patterns. A very good agreement is found between numerical and experimental results.  相似文献   

15.
裂缝的高压水力劈裂是混凝土高坝安全评估的重要部分,研究其过程中的流固耦合作用是准确预测在各种情况下裂纹扩展路径和危险程度的关键.该文利用扩展有限元法在模拟裂纹扩展方面的优势,对大坝的裂纹进行水力劈裂模拟研究.裂纹中的水压分布模型采用Brühwiler和Saouma水力劈裂试验的成果,体现了水压和裂纹宽度的耦合关系,给出了扩展有限元在裂纹面上施加水压力荷载的实施方法,对一典型重力坝裂纹的水力劈裂进行了数值模拟分析.研究结果表明:采用扩展有限元法模拟水力劈裂,克服了常规有限元法存在的缺点,裂纹扩展时不用重新划分网格,裂纹的实时宽度可以由加强节点的附加自由度得到,裂纹面上水压的施加也变得简单易行.当考虑裂纹内的流固耦合效应时,裂纹的扩展路径相比不考虑耦合效应时的扩展路径(均布全水头水压),扩展角变大,扩展距离变短.  相似文献   

16.
As a truly boundary-type meshless method, the hybrid boundary node method (HdBNM) does not require ‘boundary element mesh’, either for the purpose of interpolation of the solution variables or for the integration of ‘energy’. In this paper, the HdBNM is coupled with the finite element method (FEM) for predicting the mechanical behaviors of reinforced concrete. The steel bars are considered as body forces in the concrete. A bond model is presented to simulate the bond-slip between the concrete and steels using fictitious spring elements. The computational scale and cost for meshing can be further reduced. Numerical examples, in 2D and 3D cases, demonstrate the efficiency of the proposed approach.  相似文献   

17.
The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 667–686, September–October, 2007.  相似文献   

18.
This paper addresses the use of R-curves to study the fracture behavior of high-strength concrete and steel-fiber-reinforced concrete subjected to crack ing in a three-point bending configuration. The R-curves are modeled through an effective approach based on the equations of linear-elastic fracture mechanics (LEFM), which relates the applied load to the fundamental displacements of notched-through beams loaded monotonically. It is initially shown that, for quasi-brittle materials, the R-curves responses can be evaluated in a quasi-analytical way, using the load-crack mouth opening, the load-load line displacement, or exclusively the displacement responses obtained experimentally. Afterward, the methodology is used to obtain the fracture responses of high-strength and fiber-reinforced concretes, up to the final stages of rupture. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 701–710, September–October, 2007.  相似文献   

19.
This paper develops an analytical dynamic model for cracked beams including bending, axial stiffness, rotational inertia, shear deformation and the coupling of the last two effects. The damage is modelled using a rotational spring that simulates the crack based on fracture mechanics theory. The developed model is used to predict variations on natural frequencies for several crack sites and damage magnitude along the beam. The importance of this work lies in the development of an analytical model that has no approximation due to discretization of the displacement field. This initial theoretical approach describes the expected behaviour for changes in the natural frequencies for simply-supported and clamped-free beams with the precision that only analytical methods allow. The results provide a useful benchmark to compare with approximate numerical methods that can be used to model and analyse the problem. The model showed similar results for long span beams, but the inclusion of rotational inertia and shear deformation effects rendered improvements in the dynamic behaviour mainly in the case of slender and short span beams when compared with the simplified Euler–Bernoulli model.  相似文献   

20.
In this paper, a novel non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete is proposed. The rheological model consists of a linear springpot unit placed in series with a second springpot used for non-linear creep which activates under high stress and temperature. The model parameters which include the dynamic viscosities of the springpots and the fractional exponent are calibrated using existing experimental data of basic creep strain in concrete under constant stress and temperatures for various aggregate types. The power law form of the naturally resulting creep compliance allows an accurate representation of experimental data with the use of only a few model parameters. Furthermore, the variable-order fractional differential stress-strain equation provides a compact method for analytical and numerical modelling of basic creep under conditions of time-varying stress and temperature. In addition, applications of the proposed model to determine axial deformations in columns and transverse deflections in beams under constant and varying temperatures are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号