首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized in a single-step procedure from available copper(I) precursor at RT two Cu(I) thiolato clusters of the formula [Cu4(μ-SCH(CH3)2)6]2− and [Cu5(μ-SC(CH3)3)6] as revealed by X-ray crystallography, where increased steric bulk leads to a bigger cage with some two-coordinate metal centers. In addition, we identified a mononuclear two coordinate thiolato complex with the bulkier ligand, of the formula NEt4[Cu(SC(CH3)3)2]. This is only the second example of such a complex of an aliphatic ligand that is structurally characterized. The X-ray structure reveals an S–Cu–S angle of 176.7–179.5°, with Cu–S distances of 2.14 Å.  相似文献   

2.
A series of novel heterobimetallic crown ether-like polyoxadiphosphaplatinaferrocenophanes cis-[1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2]PtCl2 (n=1–3) (4a–c) was synthesized in good yield by cyclization of the bis(phosphine) ligands 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2 (n=1–3) (3a–c) and (PhCN)2PtCl2 under high dilution conditions in CH2Cl2. The bisphosphines 3a–c are obtained by reaction of the corresponding diols 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2OH)2 (n=1–3) (1a–c) with: (i) CH3SO2Cl in CH2Cl2 and (ii) LiPPh2 in THF. Although the X-ray crystal structure of 4a shows that the cavity is large enough for the encapsulation of small metal cations, inclusion experiments of 4a–c with Group 1 cations, and Mg2+, or NH4+ in solution applying NMR titration and cyclovoltammetric methods reveal no evidence for the formation of host–guest complexes for 4a,b. In the case of 4c only the addition of Na+ or K+ leads to an insignificant effect.  相似文献   

3.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

4.
Sn(CH3)2Cl2 exerts its antitumor activity in a specific way. Unlike anticancer cis-Pt(NH3)2Cl2 drug which binds strongly to the nitrogen atoms of DNA bases, Sn(CH3)2Cl2 shows no major affinity towards base binding. Thus, the mechanism of action by which tinorganometallic compounds exert antitumor activity would be different from that of the cisplatin drug. The aim of this study was to examine the binding of Sn(CH3)2Cl2 with calf thymus DNA and yeast RNA in aqueous solutions at pH 7.1–6.6 with constant concentrations of DNA and RNA and various molar ratios of Sn(CH3)2Cl2/DNA (phosphate) and Sn(CH3)2Cl2/RNA of 1/40, 1/20, 1/10, 1/5. Fourier transform infrared (FTIR) and UV–visible difference spectroscopic methods were used to determine the Sn(CH3)2Cl2 binding mode, binding constant, sequence selectivity and structural variations of Sn(CH3)2Cl2/DNA and Sn(CH3)2Cl2/RNA complexes in aqueous solution. Sn(CH3)2Cl2 hydrolyzes in water to give Sn(CH3)2(OH)2 and [Sn(CH3)2(OH)(H2O)n]+ species. Spectroscopic evidence showed that interaction occurred mainly through (CH3)2Sn(IV) hydroxide and polynucleotide backbone phosphate group with overall binding constant of K(Sn(CH3)2Cl2–DNA)=1.47×105 M−1 and K(Sn(CH3)2Cl2–RNA)=7.33×105 M−1. Sn(CH3)2Cl2 induced no biopolymer conformational changes with DNA remaining in the B-family structure and RNA in A-conformation upon drug complexation.  相似文献   

5.
New C3-symmetric lipophilic tripodal ionophores, Et(CH2OCH2COR)3; R=NMePh (1), R=NEtPh (2), R=piperidyl (3), have been prepared and their binding abilities for alkali and alkaline earth metal cations evaluated by extraction equilibrium and cation transport through bulk liquid membranes. Experiments show that these ionophores have considerable potential for transporting lithium, sodium and calcium ions relative to potassium and magnesium ions. The cation transport rates by ionophores 1 and 2 decrease in the order Li+>Na+>Ca2+>Ba2+>K+>Mg2+, and the selectivities of Li+/K+, Na+/K+ and Ca2+/Mg2+ are 6.47–7.24, 6.05–6.19 and 9.39–16.13, respectively. The extraction selectivity sequences of the ionophores 1 and 2 are in agreement with the descending order of the cation transport rate, and the complexation constants in chloroform phase were estimated.  相似文献   

6.
Tetrasubstituted metal-free {2H[Pc(S(CH2)6OCOC4H3S)4]} and copperphthalocyanine {Cu[Pc(S(CH2)6OCOC4H3S)4]}, bearing thiophene-2-carboxylate-hexylthio moieties, have been prepared as isomeric mixtures via cyclo-tetramerization. Both new compounds have been characterized by elemental analysis, FTIR, 1H and 13C NMR, MS (Maldi-TOF) and UV–Vis spectral data. The cation binding abilities of the functional phthalocyanines with AgI, PdII, HgII, PbII and CdII are evaluated by a monomer–oligomer formation technique with UV–Vis spectroscopy. Spectroscopic properties of the complexes were affected strongly by the electron-donating sulfanyl units on the periphery. Cyclic voltammetry and differential pulse voltammetry studies show that both compounds give up to three ligand-based reduction processes and one ligand-based oxidation process having diffusion-controlled one-electron transfer properties.  相似文献   

7.
One 6-metal Zn-Nd complex[Zn2Nd4L2(OAc)10(OH)2(CH3OH)2](1)with Schiff base ligand bis(3-methoxysalicylidene)ethylene-1,2-phenylenediamine(H2L)was constructed,and it has nanoscale rectangular structure(8×11×28 A).Excited by ligand-centered absorption bands,1 shows NIRemission of Nd3+ion.Interestingly,1 exhibits lanthanide luminescent response towards metal ions,especially to alkali metal ions(Li+,Na+ and K+)at ppm level.  相似文献   

8.
Hydrogensulfido and hydrogenselenido complexes of general composition (η5-C5R5(CO)3M(EH) (R = H, CH3; M = Cr, Mo, W; E = S, Se) react at the EH functions by deprotonation, bimolecular elimination of H2E, or by loss of the chalcogen atoms E. Reactions with Lewis-acidic complex cations such as [((η5-C5R5)(CO)3M]+ (R = H, CH3; M = Mo, W) are useful for the synthesis of chalcogen bridged compounds (μ-E)[(η5-C5R5)(CO)3M]2. The heterodinuclear chalcogen bridge complexes thus generated form metathesis equilibria with their corresponding homodinuclear systems.  相似文献   

9.
Rate constants for the tunneling reaction (HD + D → h + D2) in solid HD increase steeply with increasing temperature above 5 K, while they are almost constant below 4.2 K. The apparent activation energy for the tunneling reaction above 5 K is 95 K, which is consistent with the energy (91–112 K) for vacancy formation in solid hydrogen. The results above 5 K were explained by the model that the tunneling reaction was accelerated by a local motion of hydrogen molecules and hydrogen atoms. The model of the tunneling reaction assisted by the local motion of the reactans and products was applied to the temperature dependence of the proton-transfer tunneling reaction (C6H6 + C2H5OH → C6H7 + C2H5O) in solid ethanol, the tunneling elimination of H2 molecule of H2 molecule ((CH3)2 CHCH(CH3)2+ → (CH3)2 C = C(CH3)2+ + H2) in solid 2,3-dimethylbutane, and the selective tunneling reaction of H atoms in solid neo-C5H12-alkane mixtures.  相似文献   

10.
V. Kumar  G. Aravamudan 《Polyhedron》1990,9(24):2879-2885
Reaction of 1,3-thiazolidine-2-thione with tellurium(IV) in hydrobromic acid medium gave the hexabromotellurate, [C6H9N2S3]22+[TeIVBr6]2− (3). Reaction of 1-methylimidazoline-2-(3H)-thione (L″) with tellurium(IV), in hydrobromic acid medium, gave the mixed-ligand tellurium(II) complex [TeIIL″3Br]+Br (4). The structures of [C6H9N2S3]22+[TeIVBr6]2− (3) and [TeIIL″3Br]+Br were determined by single crystal X-ray diffraction methods. In 3 the unit cell contains [TeBr6]2− anions and two [C6H9N2S3]+ cations. There is no direct bonding between the metal atom and the cations. In the anion only slight angular deviations from the perfect octahedral geometry are observed. The lone pair of electrons on tellurium(IV) is found to be stereochemically inert. In the cation the two five-membered heterocyclic rings adopt different conformations. In complex 4, in the solid state, the planar [TeIIL″3Br]+ cation and Br anion are held together by ionic interactions. In the cation, L″ is bonded to the central tellurium atom through the sulphur atom.  相似文献   

11.
Theoretical calculations (DFT, MP2) are reported for up to four sets of reaction products of trimethylphosphine, (CH3)3P, each with H2O, HCl and HF together with DFT calculations on up to three sets of reaction products of substituted phosphonium cations, (CH3)3P–R+. These products comprise (a) P(III) normal complexes (CH3)3PHY, (b) P(IV) ‘reverse’ complexes Y(H–CH2)3P–R, (c) P(IV) ylidic complexes YHCH2(CH3)2P–R and (d) P(V) covalent compounds Y–P(CH3)3–R for Y=HO, Cl and F and R=H, CH3, C2H5, C2H4OH and C2H4OC:OCH3. Calculations are carried out at the B3LYP/6-31+G(d,p) level in all cases and also at the MP2/6-31+G(d,p) level for systems in which R=H. Minimum energy structures are determined for predicted complexes or structures and geometrical properties, harmonic vibrations and BSSE corrected binding energies are reported and compared with the limited experimental information available. Potential energy scans predict equilibria between covalent trigonal bipyramidal P(V) forms and reverse complexes comprising hydrogen bonded or ion pair, tetrahedral P(IV) forms separated by low potential energy barriers. Similar scans are also reported for equilibria between reverse complexes and ylidic complexes for Y=OH and R=CH3, C2H5, C2H4OH and C2H4OC:OCH3. Corrected binding energies, structures and values of harmonic modes are discussed in relation to bonding The names ‘pholine’ and ‘acetylpholine’ are suggested for phosphorus analogues to choline and acetylcholine.  相似文献   

12.
The atomic cations of Sr and Mo have been observed to add sequentially up to four molecules of C60 in helium at 0.35 Torr and room temperature in the flow tube of a modified inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The available center-of-mass energy in collision-induced dissociation experiments of approximately 1.3 eV failed to remove C60 from M+(C60)4. A structure is proposed for M+(C60)4 cations in which the bonding involves η6 interaction of the metal with the C60 ligands and η2-to-η2 interactions between the C60 ligands.  相似文献   

13.
The title complex [NH_3CH_2CH(NH_2)CH_3]_2 [M(Ⅵ)O_2(OC_6H_4O)_2](M= Mo_(0.6)W_(0.4))was synthesized via a simple solution-phase chemical route.The determination of single crystal X-ray diffraction revealed that the title compound is crystallized in a monoclinic system with P2(1)/n space group,a=1.0913(10)nm,b=1.0442(10)nm,c=1.8842(19)nm,α=90°,β=96.530(17)°,γ=90°,Z=4,and V=2.133(4)nm3.The mononuclear anionic unit [M(Ⅵ)O2(OC6H4O)2]2-displays chiral pseudo-octahedral [MO_6] coordination geometry and is linked by chiral cations via hydrogen bond and π…π stacking interaction.The transmission electron microscopy images show that the title complex is comprised of nano-particles with diameters ranging from 20 to 50 nm.The NMR study shows the 1H downfield chemical shifts of [NH_3CHaHbCH(NH_2)CH_3] cations in the title complex when it is mixed with adenosine-triphosphate(ATP),and the chemical shift difference between Ha and Hb is increased greatly,and most of the catecholate ligands dissociate from the central metal atoms.The DNA cleavage activity experiment reveals that DNA cleavage promoted by the title complex is lower than that by Na_2MoO_4 which possesses antitumor pro-perty,but higher than that by Na_2WO_4.  相似文献   

14.
CpCo(CO)2 is oxidised by [Cp2Fe]BF4 (Cp = C5H5) in the presence of neutral ligands L to give the dications [CpCoL3]2+ (L = SMe2, S(n-C4H9)2, PMe3, C5H5N, MeCN; Me = CH3). In [CpCo(SMe2)3]2+, sulfane ligands are substituted by neutral ligands L, L---L and L---L---L, to give the complexes [CpCoL3]2+ (L = SeMe2, TeMe2, PMe3, P(OMe)3, AsMe3, SbMe3, t-C4H9NC, C5H5N, MeCN), [Cp-Co(L---L)SMe2]2+ (L---L = R2P(CH2)nPR2, n = 1, 2, R = C6H5; bipyridine, o-phenanthroline, neocuproin) and [CpCo(L---L---L)]2+ (L---L---L = RP(CH2CH2PR2)2, R = C6H5). The dications react with iodide resulting in the monocations [CpCoL2I]+ and [CpCo(L---L)I]+. Azacobaltocinium cations [CpCo(C4R2H2N)]+ (R = H, CH3) are obtained by reaction of [CpCo(SMe2)3]2+ with metal pyrrolides.  相似文献   

15.
In order to understand the nature of the putative cationic 12-electron species [M(η51-C5R4SiMe2NR′)R″]+ of titanium catalysts supported by a linked amido-cyclopentadienyl ligand, several derivatives with different cyclopentadienyl C5R4 and amido substituents R′ were studied systematically. The use of tridentate variants (C5R4SiMe2NCH2CH2X)2− (C5R4=C5Me4, C5H4, C5H3tBu; X=OMe, SMe, NMe2) allowed the NMR spectroscopic observation of the titanium benzyl cations [Ti(η51-C5Me4SiMe2NCH2CH2X)(CH2Ph)]+. Isoelectronic neutral rare earth metal complexes [Ln(η51-C5R4SiMe2NR′)R″] can be expected to be active for polymerization. To arrive at neutral 12-electron hydride and alkyl species of the rare earth metals, we employed a lanthanide tris(alkyl) complex [Ln(CH2SiMe3)3(THF)2] (Ln=Y, Lu, Yb, Er, Tb), which allows the facile synthesis of the linked amido-cyclopentadienyl complex [Ln(η51-C5Me4SiMe2NCMe3)(CH2SiMe3)(THF)]. Hydrogenolysis of the linked amido-cyclopentadienyl alkyl complex leads to the dimeric hydrido complex [Ln(η51-C5Me4SiMe2NCMe3)(THF)(μ-H)]2. These complexes are single-site, single-component catalysts for the polymerization of ethylene and a variety of polar monomers such as acrylates and acrylonitrile. Nonpolar monomers such as -olefins and styrene, in contrast, give isolable mono-insertion products which allow detailed studies of the initiation process.  相似文献   

16.
Modified Mannich reactions of amines, amino acids and a model peptide with Ph2PH and CH2O gave bis(diphenylphosphinomethyl)amines (Ph2PCH2)2NR [R=Ph (1), CH2CH2OH (2), CH2COOCH2Ph (3), CH2CONHCH2COOCH2Ph (4), CH2COOH (5)] and (Ph2PCH2)2NCH2CH2N(CH2PPh2)2 (6). Reaction with [ReBr3(CO)3]2− under mild conditions led to [ReBr(CO)3]{(Ph2PCH2)2NR} [R=Ph (7), CH2CH2OH (8), CH2COOCH2Ph (9), CH2CONHCH2COOCH2Ph (10), CH2COOH (11)] and [ReBr(CO)3(Ph2PCH2)2NCH2]2 (12). All new complexes have been characterized by NMR and IR spectroscopy and for 7, 9 and 10, single-crystal X-ray diffraction analyses. Electrospray mass spectrometric studies show that the rhenium–phosphine chelates are very stable, especially in neutral methanolic solution. Hydrolysis of the ester and amide linkages slowly occur in acidic and basic solutions over several weeks; displacement of the bromide ligand also occurs in basic medium. Cytotoxicity testing of 7–10 and 12 showed that all the complexes are active against specific tumor cell lines, especially MCF-7 breast cancer and HeLa-S3 suspended uterine carcinoma.  相似文献   

17.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

18.
A detailed in situ 13C and 1H NMR spectroscopic characterization of the following families of alkylperoxo complexes of titanium is presented: Ti(η2-OOtBu)n(OiPr)4−n, where n = 1–4; binuclear complexes [(iPrO)3Ti(μ-OiPr)2Ti(OiPr)22-OOtBu)] and [(η2-OOtBu)(iPrO)2Ti(μ-OiPr)2Ti(OiPr)22-OOtBu)]; complexes with β-diketonato ligands: Ti(LL)2(OEt)(η2-OOtBu), Ti(LL)2(OiPr)(η2-OOtBu), Ti(LL)22-OOtBu)2, Ti(LL)2(OtBu)(η1-OOtBu), where HLL = acetylacetone, dipivaloylmethane. These alkylperoxo complexes could not be isolated due to their instability and were studied in situ at low temperatures. Whereas the side-on (η2) coordination mode of tert-butylperoxo ligand is generally preferable, the end-on (η1) coordination caused by spatial hindrance from surrounding bulky ligands is found in two cases. The quantitative data on the reactivity of alkylperoxo complexes found towards sulfides and alkenes were obtained. The system TiO(acac)2/tBuOOH in C6H6 was reinvestigated using 13C and 1H NMR spectroscopy. The structure of the complex Ti(acac)2{CH3C(O)(OOtBu)COO} actually formed in this system was elucidated. Four types of titanium(IV) alkylperoxo complexes were detected in the Sharpless–Katsuki catalytic system using 13C NMR spectroscopy.  相似文献   

19.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

20.
The two ion-pair complexes, [pyH]2[Zn(mnt)2] (1) and [4,4′-bipyH2]-[Zn(mnt)2] (2), were synthesized, where mnt2− denotes maleonitriledithiolate, and [pyH]+, [4,4′-bipyH2]2+ represent pyridinium and diprotonated 4,4′-bipyridinium, respectively. Their single crystal structures show that there are strong bifurcated H-bonding interactions between the cations of the pyridinium derivative and the [Zn(mnt)2]2− anions in both 1 and 2. The bifurcated H-bonding interactions between the N–H of the pyridiniums and the CN groups of the mnt2− ligands give rise to a 2D layered H-bonding network, the adjacent layers come together in such way as mutual embrace to give a tight pack, thus 2D hydrogen-bonding sheets further develop into 3D H-bonding networks through weak C–HS and ππ stacking interactions in 1. As for 2, the cations and anions connect into several types of H-bonding macrorings ([2+2], [3+3] and [4+4]), these H-bonding macrorings fuse to extend into 2D layered structure, the interpenetration between [3+3] and [4+4] type H-bonding macrorings in the adjacent layers give further rise to novel 3D extended H-bonding networks, in which there are clearly parallel stacks of cations and the chelate rings of anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号