首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a specimen of 70V2O5-30P2O5glass, EPR lineshapes of the vanadium 3d1 polaron have been studied between 4 and 77 K. At the lowest temperature the unpaired electron is localized at a single 51V site, and values of g=1.959, g= 1.989, A = 156.6 × 10−4 cm−1 and A=53.8 × 10−4 cm−1 have been measured. A Markovian small-step rotational diffusion model consistent with the random structure of the glass network is proposed for the polaron dynamics at the higher temperatures up to 77 K. This motion has a small activation energy barrier of 114 μeV.  相似文献   

2.
EPR lineshape simulation studies have been performed on a specimen of 80MoO3–20B2O3 glass in the temperature range of 300–77 K. The values of the obtained spin Hamiltonian parameters are: g=1.940, g=1.974, A=150.0×10−4 cm−1, A=35.6×10−4 cm−1 and g=1.935, g=1.975, A=141.9×10−4 cm−1, A=34.5×10−4 cm−1 at 300 and 77 K, respectively. The paramagnetic site in the specimen is molybdenyl, MoO3+, ion in which the Mo is in a distorted octahedral environment of six oxygen atoms with C4v symmetry. The 11-parallel and 11-perpendicular line feature of the EPR lineshape shows that two Mo nuclei are magnetically equivalent in the glassy matrix, in the temperature range 300–77 K.  相似文献   

3.
The rate constants, k1 and k2 for the reactions of C2F5OC(O)H and n-C3F7OC(O)H with OH radicals were measured using an FT-IR technique at 253–328 K. k1 and k2 were determined as (9.24 ± 1.33) × 10−13 exp[−(1230 ± 40)/T] and (1.41 ± 0.26) × 10−12 exp[−(1260 ± 50)/T] cm3 molecule−1 s−1. The random errors reported are ±2 σ, and potential systematic errors of 10% could add to the k1 and k2. The atmospheric lifetimes of C2F5OC(O)H and n-C3F7OC(O)H with respect to reaction with OH radicals were estimated at 3.6 and 2.6 years, respectively.  相似文献   

4.
The collisional behaviour of Ba[6s5d(3DJ)], 1.151 eV above the 6s2(1S0) electronic ground state, in the presence of atomic strontium, has been investigated in the ‘long-time domain' (ca. 100 μs–1 ms) following the pulsed dye-laser excitation of barium vapour at elevated temperature at λ = 553.5 nm (Ba[6s6p(1P1)] ← Ba[6s2(1S0)]. Ba(3DJ) is subsequently produced from the short-lived 1P1 state (τe = 8.37 ± 0.38 ns) by a number of radiative and collisional processes. It may then be monitored in the ‘long-time domain' by atomic spectroscopic marker methods involving either collisional activation of Ba(3DJ) by Ba(1S0) and He buffer gas to yield Ba[6s6p(3PJ)] with subsequent emission from the 3P1 state (τe = 1.2 ± 0.1 μs): Ba[6s6p(3P1)] → Ba[6s2(1S0)] + hv (λ = 791.1 nm). Alternatively, emission from Ba(1P1) may be monitored at long times following the generation of this short-lived state by energy pooling following self-annihilation of Ba(3DJ) + Ba(3DJ) from Ba[6s6p(1P1)] → Ba[6s2(1S0)] + hv (λ = 553.5 nm). The generation of Ba(3DJ) in the presence of atomic strontium yields emission in the long-time domain from Sr[5s5p(3P1)] (τe = 19.6 μs): Sr[5s5p(3P1)] → Sr[5s2(1S0)]  + hv (λ = 689.3 nm). Whilst the decay profiles at short times are complex in form, at long times all these atomic profiles show first-order kinetic removal with the decay coefficients for λ = 791.1 nm, 689.3 nm and 553.5 nm emissions in the ratio 1 : 2 : 2, consistent with overall third-order activation of the form: Ba(3DJ) + Ba(3DJ) + Sr(1S0) → Sr(3PJ) + 2Ba(1S0). The mechanism is modelled in detail, including measurement of integrated emission intensities, yielding kinetic data for fundamental collisional processes. The overall rate constant for the third-order collisional activation of Sr[5s5p(3PJ])from 2Ba[6s5d(3DJ)] + Sr[5s2(1S0)] takes the upper limit of 5.8 × 10−27 cm6 atom−2 s−1 (T = 900 K). The rate constant for the two body collisional quenching of Ba[6s5d(3DJ)] by ground state atomic strontium, Sr[5s2(1S0)], is found to be (2.0 ± 0.1) × 10−12 cm3 atom−1 s−1 (T = 900 K).  相似文献   

5.
The oxidation of Cp2MCl2 (M= Mo, W) with perfluortriazinium tetrafluoroborate, [(FCN)3F]+[BF4], in the presence of a flouride ion acceptor (BF3 or PF5) in SO2 solution yielded the cationic metallocene complexes [Cp2MCl 2]2+[BF4] or [Cp2MCl2] 2+[BF4][PF6] (M = Mo, W), respectively. In these reactions, for the first time the perfluortriazinium cation has proved to be easy to handle and a useful oxidizer in organometallic chemistry. The oxidizer strength of three fluorotriazinium cations, [(XCN)3F]+ (X = F, Cl, H), has been computed ab initio (HF/6 − 31 + G) and calibrated on literature data which were obtained by local density functional calculations. It was anchored to its F+ zero point by an experimental value for KrF+. ab]Die Oxidation von Cp2MCl2 mit (M = MO, W) Perfluortriaziniumtetrafluoroborat, [(FCN)3F]+[BF4], in Anwesenheit eines Fluoridionenakzeptors (BF3 oder PF5) führte in SO2-Lösung zur Bildung der kationischen Metallocen-Komplexe [Cp2MCl2+]2+[BF4]2 bzw. [Cp2MCl2]2+[BF4] [PF6] (M = Mo, W). In diesen Reaktionen konnte erstmals gezeigt werden, daß Perfluortriazinium-Kationen einfach zu handhabende und nützliche Oxidationsmittel im Bereich der metallorganischen Synthese darstellen. Das (Mdationsvermögen von drei Fluorotriazinium-Kationen, [(XCN)3F]+(X = F, Cl, H), wurde ab initio berechnet (HF/6 − 31 + G) und mit Hilfe von Literaturdaten, die mittels local density functional-Berechnungen erhalten und am experimentellen Wert von KrF + bezüglich des F+ Nullpunktes verankert wurden, kalibriert.  相似文献   

6.
A configuration of dense mixed ionic and electronic conducting (MIEC) membrane with layered morphological structure for oxygen separation, which combines the benefits of high oxygen permeation flux of cobalt-based membrane, high chemical stability of iron-based perovskite and high mechanical strength of thick membrane, was studied. The membrane is normally composed of two layers; each layer is a dense MIEC oxide. The substrate layer is a thick dense membrane with high oxygen permeability but relatively lower chemical stability. The feasibility of dense thick Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) membrane as the substrate layer and Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF5528) as the thin-film layer was mainly experimentally investigated. Both the BSCF5582 and the BSCF5528 show the same cubic perovskite structure and the similar lattice constant with no detrimental reaction products formed. By optimizing fabrication parameters of a simple dry pressing process, dual-layered membrane, free of cracks, was successfully fabricated. The oxygen permeation flux of a dual-layered membrane with the thin-film BSCF5528 layer facing to the sweep gas reached 2.1 mL cm−2 min−1 [STP] (1.56 × 10−6 mol cm−2 s−1) at 900 °C, which is about 3.5 times higher than that of the BSCF5528 membrane (0.6 mL cm−2 min−1, [STP] (4.46 × 10−7 mol cm−2 s−1) under the same conditions.  相似文献   

7.
The anion [Fe4S3(NO)7] undergoes slow exchange with labelled nitrite [15NO2] to yield a product [Fe4S3(14NO)(15NO)6] in which complete isotopic exchange has occurred at the basal Fe(NO)2 groups, but with no exchange at the apical Fe(NO) group. The neutral Fe4S4(NO)4 reacts rapidly with [15NO2 to give fully exchanged [Fe4S3(15NO)7], and it is proposed that the conversion proceeds by fragmentation, followed by complete isotopic exchange and rapid reassembly. The binuclear anion [Fe2S2(NO)4]2− also yields, with [15NO2]2− in CD2Cl2 solution, the fully exchanged [Fe4S3(15NO)7], and a mechanism involving successive fragmentation, exchange and reassembly steps is proposed; however in aqueous solution, a clean exchange reaction occurs to give [Fe2S2(15NO)4]2−. Neutral binuclear esters Fe2(SR)2(NO)4 (R = Me, Et, or Ph) with [14NO2] yield the mononuclear paramagnetic [Fe(14NO)2(14NO2)2], and with [15NO2] the analogous [Fe(15NO)2(15NO2)2].  相似文献   

8.
The tetrathiomolybdate ion [MoS4]2− reacts in DMF solution with Roussin esters Fe2(SR)2(NO)4 (R = Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, n-C5H11) to yield the paramagnetic iron nitrosyls [Fe(NO)2(SR)2] (1), [Fe(NO)2(S2MoS2] (2) and [Fe(NO)(S2MOS2)2] (3). The new complexes (2) and (3) have been characterized by EPR spectroscopy and the assignment to them of constitutions based respectively upon tetrahedral and square pyramidal iron is supported by EHMO calculations. Fe2(SPh)2(NO)4 with [MoS4]2− yields only [Fe(NO)2(SPh)2], and preformed (3) reacts with PhS to give firstly EPR-silent species, and then [Fe(NO)2(SPh)2]. The mononitrosyl (3) can also be formed by reaction of [MoS4]2− with [Fe4S3(NO)7], Fe4S4(NO)4, or Fe2I2(NO)4.  相似文献   

9.
[M(CO)4PPh3] (M = Mo, W) were trapped at 77 K in X-irradiated single crystals of M(CO)5PPh3 and studied by EPR. Structures of [M(CO)4PPh3] (M = Cr, Mo, W) were optimized by DFT; predicted g and 31P-hyperfine tensors agree with experiments for M = Mo, W. The anions adopt a slightly distorted pyramidal structure with PPh3 in basal position and the spin mostly delocalized in a metal-dz2 orbital and carbon-pz orbitals of carbonyls. The EPR tensors are slightly modified by annealing, they suggest that new constraints in the matrix distort the structure of [M(CO)4PPh3] (M = Cr, Mo, W).  相似文献   

10.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

11.
The absolute absorption cross-sections of a recently discovered atmospheric gas, SF5CF3, have been measured at He I (21.22 eV) and Ne I (16.64 and 16.82 eV) photon energies using a VUV discharge lamp and a double ion chamber method. Absorption cross-sections of (9.52 ± 0.95) × 10−17 cm2 (He I) and (8.79 ± 0.88) × 10−17 cm2 (Ne I) were obtained and compared with data from other studies. The consequences for the cross-section at the hydrogen Lyman- energy (10.20 eV) are discussed.  相似文献   

12.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

13.
The tridecameric aluminum polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Upon addition of sulfate, the tridecamer crystallized as the monoclinic basic aluminum sulfate Na0.1[AlO4Al12(OH)24(H2O)12](SO4)3.55. The dehydroxylation of the basic aluminum sulfate has been studied by Fourier transform in-situ infrared emission spectroscopy over a temperature range of 200° to 750°C at 50°C intervals. The spectrum is characterized by the sulfate ν1 (1024 cm−1), ν3 doublet (1117 and 1168 cm−1) and the ν4 doublet (568 and 611 cm−1) modes. Furthermore, minor bands assigned to nitrate are observed. Upon heating from ≈350° to 400°C major changes are observed, especially in the bandwidth and band intensities. The bands in the hydroxyl stretching region due to the Al13 group disappear, whereas the bands around 1050 cm−1 display various changes in bandwidths, intensities and positions associated with the dehydration and dehydroxylation of the basic sulfate and the changing of the structure into an aluminum oxosulfate. The nitrate bands diminish upon heating.  相似文献   

14.
The specific additions of one, three or four Ph3PAu groups to [M(CO)5] (M=Mn, Re) are described. Thus [M(CO)5] in THF reacts with [(Ph3PAu)3O]BF4 to give [(Ph3PAu)4Mn(CO)4]BF4. An X-ray crystal structure of the M = Mn example shows the cation to have a trigonal bipyramidal Au4Mn core with the Mn in an equatorial site. The previously known neutral (Ph3PAu)3M(CO)4 clusters are formed by addition of two Ph3PAu groups, using the mixed reagent [(Ph3PAu) 3O]BF4/[ppn][Co(CO)4], to Ph3PAuM(CO)5, which itself is readily prepared from [M(CO)5] and Ph3PAuCl.  相似文献   

15.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

16.
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements.  相似文献   

17.
An η1-butadienyl complex [trans-η1-CH2=C(Me)C=CH2Pd(PPh3)2Cl] (1) reacted with [(μ-η2:η2-1,3-butadiene)Pd2(PPh3)(μCl)Cl] (2) to result in displacement of the diene ligand of 2 accompanied by exchange of PPh3 of 1 with Cl anion of 2 producing a butadienyl tripalladium cluster [(μ-CH2=C(Me)C=CH2)Pd(PPh3)Cl2 · Pd2(PPh3)2(μ-Cl)] (3) stabilized by the zwitterionic structure in moderate yield. The X-ray structure analysis of 3 revealed rigid binding of [Pd2(PPh3)2(μ-Cl)]+ and [CH2 =C(Me)C=CH2Pd(PPh3)Cl2] through the π-bond coordination of the butadienyl group to the dipalladium cation.  相似文献   

18.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

19.
Gaseous nitryl azide N4O2 is generated by the heterogeneous reaction of gaseous ClNO2 with freshly prepared AgN3 at −50 °C. The geometric and electronic structure of the molecule in the gas phase has been characterized by in situ photoelectron spectroscopy (PES) and quantum chemical calculations. The experimental first vertical ionization energy of N4O2 is 11.39 eV, corresponding to the ionization of an electron on the highest occupied molecular orbital (HOMO) {4a″(πnb(N4–N5–N6))}−1. An apparent vibrational spacing of 1600 ± 60 cm−1asO1N2O3) on the second band at 12.52 eV (πnb(O1–N2–O3)) further confirms the preference of energetically stable chain structure in the gas phase. To complement the experimental results, the potential-energy surface of this structurally novel transient molecule is discussed. Both calculations and spectroscopic results suggest that the molecule adopts a trans-planar chain structure, and a five-membered ring decomposition pathway is more favorable.  相似文献   

20.
The five-coordinate mono-halide mononuclear Zn(II) complexes [Zn(tpa)X]+ (tpa = tris(2-pyridylmethyl)amine; X = I ([Zn(tpa)I]I; 1a), Br ([Zn(tpa)Br](ZnBr4)0.5; 2a) and Cl ([Zn(tpa)Cl](ZnCl4)0.5; 3a)) and the six-coordinate mononuclear complex [Zn(tpa)(NCS)2] (4a) have been synthesized and characterized by X-ray crystallography. The [Zn(tpa)X]+ complexes doped with the corresponding [Mn(tpa)X2] complexes (X = I (1b), Br (2b) and Cl (3b)) have been synthesized and their electronic properties investigated by multifrequency high field EPR (HF-EPR) (95–285 GHz). The magnetically diluted conditions allow the determination of the hyperfine coupling constant A (A = 68.10−4 cm−1 for 1b–3b). The zero-field splitting parameters (D and E) found for 1b–3b are comparable to those found for neat samples of the [Mn(tpa)X2] complexes (1b: D = 0.635 cm−1, E/D = 0.189; 2b: D = 0.360 cm−1, E/D = 0.192; 3b: D = 0.115 cm−1, E/D = 0.200). The efficacy of using multifrequency EPR under dilute conditions to precisely determine spin Hamiltonian parameters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号