首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we present a detailed structural of a series of B-doped hydrogenated microcrystalline silicon (μc-Si:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and B-doped polycrystalline silicon (poly-Si) films produced by step-by-step laser crystallization process from amorphous silicon. The influence of doping on the structural properties and structural changes during the sequential crystallization processes were monitored by Raman spectroscopy. Unlike μc-Si:H films, that consist of a two-phase mixture of amorphous and ordered Si, partially crystallized sample shows a stratified structure with polycrystalline silicon layer at the top of an amorphous layer. With increasing doping concentration the LO-TO phonon line in poly-Si shift to smaller wave numbers and broadens asymmetrically. The results are discussed in terms of resonant interaction between optical phonons and direct intraband transitions known as a Fano resonance. In μc-Si:H films, on the other hand, the Fano effect is not observed. The increase of doping in μc-Si:H films suppressed the crystalline volume fraction, which leads to an amorphization in the film structure. The structural variation in both μc-Si:H and poly-Si films leads to a change in hydrogen bonding configuration.  相似文献   

2.
Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi多晶硅 受激准分子激光器结晶 结晶化 界面晶粒生长polycrystalline silicon, excimer laser crystallization,Ni-disilicide, Ni-metal-induced lateral crystallization, two-interface grain growthProject supported by the National High Technology Development Program of China (Grant No 2002AA303250) and by the National Natural Science Foundation of China (Grant No 60576056).9/7/2005 12:00:00 AM3/6/2006 12:00:00 AMPolycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.  相似文献   

3.
P掺杂硅纳米管电子结构与光学性质的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
余志强  张昌华  郎建勋 《物理学报》2014,63(6):67102-067102
采用基于密度泛函理论的第一性原理计算,研究了P掺杂对单壁扶手型硅纳米管电子结构和光学性质的影响.结果表明:经过P掺杂,单壁扶手型硅纳米管的能带结构从间接带隙变为直接带隙,其价带顶主要由Si-3p态电子构成,导带底主要由Si-3p态电子和Si-3s态电子共同决定;同时通过P掺杂,使单壁扶手型硅纳米管的禁带宽度变窄,导电性增强,吸收光谱产生红移.研究结果为硅纳米管在光电器件方面的应用提供了理论基础.  相似文献   

4.
硅材料作为光电探测器的基础材料,研究其在强激光辐照下的损伤问题在激光探测、国防领域很有意义。对高强度纳秒激光作用下硅表面的损伤形貌特征进行了研究,结果表明:激光等离子体的热效应及冲击波效应,使激光作用区域内的物质迅速向外飞溅,形成点坑,并在点坑周围形成辐射状冷却物;散射光与入射激光干涉产生形成周期性分布的热应力使得硅材料表面张力发生变化,冷却后会在坑底表面产生周期性结构;从激光等离子体的光谱中可以发现N,O和Si的特征光谱,在重复激光脉冲作用下会在硅表面上覆盖一层导致色变的SiOx和SiNx复合薄膜,是激光等离子体的喷射产物。  相似文献   

5.
以金属W和Ta为热丝,采用热丝化学气相沉积 ,在250℃玻璃衬底上沉积多晶硅薄膜.研究了热丝温度、沉积气压、热丝与衬底间距等沉积参数对硅薄膜结构和光电特性的影响,在优化条件下获得晶态比Xc>90%,暗电导率σd=10-7—10-6Ω -1cm-1,激活能Ea=0.5eV,光能隙Eopt≤1.3 eV的多晶硅薄膜. 关键词: 多晶硅薄膜 热丝化学气相沉积 光电特性  相似文献   

6.
We report the results of an investigation of Fe-doped nanocrystalline ZnO particles synthesized using the co-precipitation method with doping concentrations from 5 up to 31 at%. To understand how the dopant influenced the structural, magnetic and optical properties of nanocrystalline ZnO particles, X-ray diffraction, energy dispersive X-ray spectroscopy, infrared absorption spectroscopy, UV-vis spectroscopy, electron spin resonance spectroscopy (ESR) and vibrating sample magnetometer were employed. From the analysis of X-ray diffraction, our Fe-doped nanocrystalline ZnO particles are identified as having the wurtzite crystal structure and the unit cell volume increases with increasing doping concentrations. However, impurity phases are observed for Fe contents higher than 21 at%. Sample structures were further studied by infrared spectra, from which a broad and strong absorption band in the range of 400-700 cm−1 and -OH stretching vibrational mode at approximately 3400 cm−1 were observed. Ultraviolet-visible measurements showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. Magnetic measurements showed a ferromagnetic behavior for all samples. ESR results indicate the presence of Fe in both valence states Fe2+ and Fe3+.  相似文献   

7.
The effect of laser irradiation on the electrical properties of Li0.5+z Co z Dy x Fe2.5?2z?x O4 ferrite (0.0 ≤ x ≤ 0.2, z = 0.1) has been studied in the temperature range 300 K ≤ T ≤ 750 K at frequencies of 10 kHz?5 MHz, using a LIMO-IR laser diode, at a wavelength of 808 nm. It was found that laser irradiation increases the polarization, the resistivity and the paramagnetic region. As the result of electronic rearrangement and lattice defects, small polorons and clusters were created. The doping of LiCo-Ferrite by Dy3+ increases both the AC and DC resistance of the investigated material. The variation of the AC and DC resistance with the Dy-content (x) obeys the following correlations R ac/100 = 50x 2+4x+0.005 and R dc/1000 = 31x 2+0.099x+0.09, respectively. A peculiar behaviour was obtained for the sample with Dy-content x = 0.075, as the resistance notably decreases. The applicable result is that laser irradiation increases the resistance of LiCo-ferrite by about 17% while its doping by dysprosium at x = 0.15 increases the resistance by about 23%. Its value is nearly stable for the temperature range from 340 to 480 K.  相似文献   

8.
CdS thin films have been grown on Si(1 1 1) and quartz substrates using femtosecond pulsed laser deposition. X-ray diffraction, atomic force microscopy, photoluminescence measurement, and optical transmission spectroscopy were used to characterize the structure and optical properties of the deposited CdS thin films. The influence of the laser fluence (laser incident energy in the range 0.5–1.5 mJ/pulse) on the structural and optical characterizations of CdS thin films has been studied. The results indicate that the structure and optical properties of the CdS thin films can be improved as increasing the per pulse output energy of the femtosecond laser to 1.2 mJ. But when the per pulse output energy of the femtosecond laser is further increased to 1.5 mJ, which leads to the degradation of the structure and optical properties of the CdS thin films.  相似文献   

9.
Monoclinic bismuth oxide (Bi2O3) films have been prepared by thermal oxidation of vacuum evaporated bismuth thin films onto the glass substrates. In order to obtain the single phase Bi2O3, the oxidation temperature was varied in the range of 423-573 K by an interval of 50 K. The as-deposited bismuth and oxidized Bi2O3 films were characterized for their structural, surface morphological, optical and electrical properties by means of X-ray diffraction, scanning electron microscopy (SEM), optical absorption and electrical resistivity measurements, respectively. The X-ray analyses revealed the formation of polycrystalline mixed phases of Bi2O3 (monoclinic, α-Bi2O3 and tetragonal, β-Bi2O3) at oxidation temperatures up to 523 K, while at an oxidation temperature of 573 K, a single-phase monoclinic α-Bi2O3 was formed. From SEM images, it was observed that of as-deposited Bi films consisted of the well-defined isolated crystals of different shapes while after thermal oxidation the smaller dispersed grains were found to be merged to form bigger grains. The changes in the optical properties of Bi2O3 films obtained by thermal oxidation at various temperatures were studied from optical absorption spectra. The electrical resistivity measurement depicted semiconducting nature of Bi2O3 with high electrical resistivity at room temperature.  相似文献   

10.
Nanocrystalline ZnO thin films were deposited at different temperatures (Ts = 325 °C–500 °C) by intermittent spray pyrolysis technique. The thickness (300 ± 10 nm) independent effect of Ts on physical properties was explored. X-Ray diffraction analysis revealed the growth of wurtzite type polycrystalline ZnO films with dominant c-axis orientation along [002] direction. The crystallite size increased (31 nm–60 nm) and optical band-gap energy decreased (3.272 eV–3.242 eV) due to rise in Ts. Scanning electron microscopic analysis of films deposited at 450 °C confirmed uniform growth of vertically aligned ZnO nanorods. The films deposited at higher Ts demonstrated increased hydrophobic behavior. These films exhibited high transmittance (>91%), low dark resistivity (~10?2 Ω-cm), superior figure of merit (~10?3 Ω?1) and low sheet resistance (~102 Ω/□). The charge carrier concentration (η -/cm3) and mobility (μ – cm2V?1s?1) are primarily governed by crystallinity, grain boundary passivation and oxygen desorption effects.  相似文献   

11.
《Current Applied Physics》2015,15(4):511-519
The flat a-Si and slanted nanocolumnar (S-nC) a-Si thin films were prepared on c-Si and corning glass substrates by e-beam physical vapor deposition (EB-PVD) technique. The structural properties of all the grown thin films were determined by X-Ray Diffraction (XRD) analysis and Raman spectroscopy. Surface and cross-sectional morphology of a-Si/c-Si and S-nC a-Si/c-Si heterojunctions were investigated by Field Emission Scanning Electron Microscopy (FE-SEM). Sculptured thin films demonstrate potential for significant nanoscale applications in the area of thin film technology. The electrical and photovoltaic properties of these heterojunctions have been investigated by means of dc current–voltage (I–V) measurements at room temperature in dark and light conditions. The S-nC STFs' performance has been found to be improvable on changing the morphology of the thin film. We have found that, the porous morphology of this structure improves the photosensitivity features in photovoltaic devices and solar cell technology. We gained a high open voltage value, such as 900 mV in S-nC a-Si/c-Si thin film, without any doping process.  相似文献   

12.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

13.
姚志涛  孙新瑞  许海军  李新建 《中国物理》2007,16(10):3108-3113
Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of $\sim$10\,\mu$m. The film resistivity of ZnO/Si-NPA is measured to be $\sim$8.9\Omega\cdot$\,cm by the standard four probe method. The lengthwise $I$-$V$ curve of ZnO/Si-NPA heterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.  相似文献   

14.
Laser irradiation has been previously investigated for achieving uniform heating of polyethylene terephthalate (PET) fibres in the hot-drawing stage of the production process, so as to obtain better fibre mechanical properties. The optical properties and dye uptake of PET fibres also depend on the polymer chain orientation and crystallinity within the fibre structure. This paper reports an investigation of a concept whereby laser irradiation and interferometry could be used to modify and trace a small change in the optical properties of a PET monofilament fibre, but the corresponding change in the dye uptake would not be detected visually. A copper vapour laser (550-580 nm wavelengths) was used to expose consecutive 4 mm lengths along a running length of monofilament to 39.8 W cm−2, at a pulse rate of 9.89 kHz in order to modify, in a controlled way, the polymer crystallinity and orientation. A 3D finite element simulation, based on uncoupled heat-transfer analysis, indicated that rapid heating and cooling could be obtained with the laser to give the small changes required. Irradiated and untreated samples were analysed by interferometry and a 0.16% change was detected in the birefringence profiles, corresponding to a small reduction in the degree of orientation and crystallinity of the irradiated samples. Density measurements and wide-angle X-ray scattering (WAXS) analysis confirmed the change in crystallinity. Tests conducted for dye adsorption and tensile strength showed a small increase in the former and only a very small decrease in the latter. It was concluded that these changes in property provide the opportunity for a laser-irradiated PET monofilament fibre to be used as a subtle tracer element in brand labels for textile garments as an anti-counterfeit measure.  相似文献   

15.
采用基于密度泛函理论的第一性原理计算对含有反位缺陷(5,5)单壁碳化硅纳米管的电子结构和光学性质进行了研究.纳米管进行结构优化的结果显示,CSi缺陷在纳米管表面形成了凹陷,SiC缺陷形成了凸起;反位缺陷在纳米管的导带底附近形成了缺陷能级,使纳米管表现出n型导电的特点,由价带顶到缺陷能级的跃迁,在垂直和平行于纳米管管轴方向上形成了新的介电峰.  相似文献   

16.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

17.
Morphological, optical and transport characteristics of the RF sputtered zinc oxide (ZnO) thin films over the mesoporous silicon (PS) substrates have been studied. Effect of substrate porosity on the grain growth and transport properties of ZnO has been analyzed. Physical and optical properties of ZnO-PS structures were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectroscopy. Our experimental results indicate that on changing porosity of the PS substrates, regularity of the spatial distribution of the ZnO nanocrystallites can be controlled. While the morphology and grain size of ZnO depended strongly on the morphology and pore size of the PS substrates, the rectifying factors of the metal semiconductor junction were found to be different by a factor of 3. The deposition of semiconducting oxides on such mesoporous substrates/templates offers the possibility to control their properties and amplify their sensing response.  相似文献   

18.
A series of nc-Si:H films with different crystalline volume fractions have been deposited by very high frequency glow discharge in a plasma with a silane concentration [SiH4]/([SiH4] + [H2]) varying from 2% to 10%. The nc-Si:H films have been characterized by Raman spectroscopy, XRD diffraction, and UV-vis-near infrared spectrophotometer. The deposition rate increases nearly linear with increasing the silane concentration while the crystalline volume fraction decrease from 58% to 12%. The refractive index and the absorption of the samples were obtained through a modified four-layer-medium transmission model based on the envelope method. It was found that the refractive indices and absorption coefficient increase with increasing silane concentration. Compared to the films deposited using conventional RF-PECVD with excitation frequency of 13.56 MHz, the samples prepared by very high frequency glow discharge have higher absorption coefficients, which is due to its better compactness and lower defect density.  相似文献   

19.
氢化非晶硅薄膜中氢含量及键合模式的红外分析   总被引:10,自引:0,他引:10       下载免费PDF全文
Fourier红外透射(FTIR)谱技术是研究氢化非晶硅(a-Si∶H)薄膜中氢的含量(CH)及硅—氢键合模式(Si-Hn)最有效的手段.对用等离子体化学气相沉积(PCVD)方法在不同的衬底温度(Ts)下制备出的氢化非晶硅薄膜,通过红外透射光谱的基线拟合、高斯拟合分析,得到了薄膜中的氢含量,硅氢键合模式及其组分,并分析了这些参量随衬底温度变化的规律.  相似文献   

20.
Zinc oxide thin films were deposited on soda lime glass substrates by pulsed laser deposition in an oxygen-reactive atmosphere at 20 Pa and a constant substrate temperature at 300 °C. A pulsed KrF excimer laser, operated at 248 nm with pulse duration 10 ns, was used to ablate the ceramic zinc oxide target. The structure, the optical and electrical properties of the as-deposited films were studied in dependence of the laser energy density in the 1.2-2.8 J/cm2 range, with the aid of X-ray Diffraction, Atomic Force Microscope, Transmission Spectroscopy techniques, and the Van der Pauw method, respectively. The results indicated that the structural and optical properties of the zinc oxide films were improved by increasing the laser energy density of the ablating laser. The surface roughness of the zinc oxide film increased with the decrease of laser energy density and both the optical bang gap and the electrical resistivity of the film were significantly affected by the laser energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号