首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective interactions of cationic porphyrins with G-quadruplex structures   总被引:11,自引:0,他引:11  
G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.  相似文献   

2.
3.
本文合成了两种三联吡啶修饰的萘酰亚胺化合物NPI1和NPI2,并利用紫外-可见吸收光谱(UV-Vis)、圆二色光谱(CD)、荧光共振能量转移(FRET)等方法研究了它们与双链CT DNA和Htelo G-四链体DNA的相互作用。实验结果表明,化合物NPI1和NPI2对G-四链体DNA具有很好的结合能力和选择性,溶液中的碱金属离子种类和萘酰亚胺基团上的取代基对NPI1和NPI2与DNA的作用有很大的影响。在含K+的缓冲液中,NPI2与G-四链体的结合常数达到1.06×108 L/mol,是与双链CT DNA结合常数的268倍。圆二色谱结果表明在不含碱金属离子的溶液中,NPI1和NPI2可诱导Htelo DNA形成反平行结构G-四链体。Autodock分子对接模拟表明NPI1和NPI2可以通过堆积作用、静电作用、氢键等作用方式与G-四链体结合,使得它们对G-四链体具有很高亲和性(Ka>107 L/mol)。  相似文献   

4.
In the last decade, there has been growing interests in studies aimed at delineating the strategies used by various nucleic acid enzymes to facilitate catalysis. Insights gained from such studies would enable the design of better DNA/RNA catalysts for various applications such as biosensing. DNA and RNA catalysts have been shown to be able to catalyze myriads of reactions, including peroxidation reactions, which are catalyzed by G-quadruplexes. In this report, we provide data that clarifies how G-quadruplex peroxidases achieve catalysis. Firstly, we show that by covalently linking a hemin cofactor to DNAzymes, anti-parallel G-quadruplexes, which have been previously shown to be catalytically inefficient, can be "resurrected" to become good peroxidation catalysts. We also reveal that the relative rates of peroxidation by DNAzyme peroxidases depend on the nature of the organic reductant, arguing for a special binding site in the peroxidase-mimicking DNAzymes for catalysis.  相似文献   

5.
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. In this work, a thiophene-containing dinuclear ruthenium(II) complex, [Ru2(bpy)4(H2bipt)]4+ {bpy = 2,2′-bipyridine, H2bipt = 2,5-bis[1,10]phenanthrolin[4,5-f]-(imidazol-2-yl)thiophene}, was prepared and the interaction between the complex and human telomeric DNA oligomers 5′-G3(T2AG3)3-3′ (HTG21) has been investigated by UV-Vis, fluorescence and circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, fluorescent intercalator displacement (FID) titrations, Job plot and color reaction studies. The results indicate that the complex can well induce and stabilize the formation of antiparallel G-quadruplex of telomeric DNA in the presence or absence of metal cations, and the ΔTm value of the G-quadruplex DNA treated with the complex was obtained to be 12.8 °C even at levels of 50-fold molar of duplex DNA (calf-thymus DNA), suggesting that the complex exhibits higher G-quadruplex DNA selectivity over duplex DNA. The complex shows high interaction ability with G-quadruplex DNA at (1.17 ± 0.12) × 107 M?1 binding affinity using a 2:1 [complex]/[quadruplex] binding mode ratio. A novel visual method has been developed here for making a distinction between G-quadruplex DNA and duplex DNA by our ruthenium complex binding hemin to form the hemin-G-quadruplex DNAzyme.  相似文献   

6.
Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+-dependent but K+-independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.  相似文献   

7.
A series of platinum(II) complexes containing dipyridophenazine (dppz) and C-deprotonated 2-phenylpyridine (N-CH) ligands were prepared and assayed for G-quadruplex DNA binding activities. [PtII(dppz-COOH)(N-C)]CF3SO3 (1; dppz-COOH = 11-carboxydipyrido[3,2-a:2',3'-c]phenazine) binds G-quadruplex DNA through an external end-stacking mode with a binding affinity of approximately 10(7) dm3 mol-1. G-quadruplex DNA binding is accompanied by up to a 293-fold increase in the intensity of photoluminescence at lambdamax = 512 nm. Using a biotinylated-primer extension telomerase assay, 1 was shown to be an effective inhibitor of human telomerase in vitro, with a telIC50 value of 760 nM.  相似文献   

8.
Four new di-substituted phenanthroline-based compounds a-d have been designed and prepared, and they have been shown to induce the formation of anti-parallel structure of human telomeric G-quadruplex DNA by CD spectra. FRET assay indicates that the melting temperature increases (ΔT(m) values) of G-quadruplex in buffer (pH 7.4) containing 100 mM NaCl are 31.6, 34.6, 17.8 and 32.6 °C for the compounds (1.0 μM) a, b, c and d, respectively. Competitive FRET assay shows that the four compounds exhibit a high G-quadruplex DNA selectivity over duplex DNA. Three of the compounds are the potent telomerase inhibitors and HeLa cell proliferation inhibitors.  相似文献   

9.
A synthetic methodology for the synthesis of various β-pyrrolic-functionalised porphyrins and their covalent attachment to 2'-deoxyuridine and DNA is described. Palladium(0)-catalysed Sonogashira and copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2'-deoxyuridine and DNA. Insertion of a porphyrin into the middle of single-stranded CT oligonucleotides possessing a 5'-terminal run of four cytosines was shown to trigger the formation of pH- and temperature-dependent i-motif structures. Porphyrin insertion also led to the aggregation of single-stranded purine-pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti-parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin-modified triplex-forming oligonucleotide (TFO) strands was observed, whereas anti-parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations.  相似文献   

10.

A series of mono imine (C=N) group that contained Wittig-based Schiff-Base ligands was optimized using the DFT-based computational method and Gaussian 09 program package. These optimized molecules were docked with Quadruplex DNA (PDB ID: 1KF1) and duplex DNA (PDB ID: 1BNA) using AutoDock Vina program along with the reference molecules. Schiff-Base ligands derived from fused aromatic rings contained amines and precursor aldehyde (PA-5 both Z and E isomers) showed lower binding energy for G-quadruplex DNA among all and N-5 category both Z and E isomer Schiff-Base ligands have shown high selectivity for G-quadruplex DNA over duplex DNA which is a very important phenomenon to develop the G-quadruplex DNA stabilizers. For a few Schiff-Base molecules like Ligand-6 (1-{[2-Hydroxy-5-(2-pyren-1-yl-vinyl)-benzylidene]-amino}-naphthalen-2-ol) of N-5 category both Z and E isomers with groove binding and end stacking modes, molecular dynamic calculations were carried out. The study revealed that Ligand-6 of N-5 category E isomer with groove binding mode has higher stabilizing effect on G-quadruplex DNA in spite of having the higher binding energy value. Among Schiff-Base copper(II) complexes, Complex-3 (E-(1-{[2-Hydroxy-5-(2-pyren-1-yl-vinyl)-benzylidene]-amino}-naphthalen-2-ol)Cu) is having high binding affinity for G-quadruplex DNA as compared to others.

  相似文献   

11.
A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.  相似文献   

12.
YES G-rich oligonucleotide VK2 folds into an AGCGA-quadruplex tetrahelical structure distinct and significantly different from G-quadruplexes, even though it contains four G3 tracts. Herein, a bis-quinolinium ligand 360A with high affinity for G-quadruplex structures and selective telomerase inhibition is shown to strongly bind to VK2. Upon binding, 360A does not induce a conformational switch from VK2 to an expected G-quadruplex. In contrast, NMR structural study revealed formation of a well-defined VK2–360A complex with a 1:1 binding stoichiometry, in which 360A intercalates between GAGA- and GCGC-quartets in the central cavity of VK2. This is the first high-resolution structure of a G-quadruplex ligand intercalating into a G-rich tetrahelical fold. This unique mode of ligand binding into tetrahelical DNA architecture offers insights into the stabilization of an AGCGA-quadruplex by a heterocyclic ligand and provides guidelines for rational design of novel VK2 binding molecules with selectivity for different DNA secondary structures.  相似文献   

13.
We describe a general multinuclear (1H, 23Na, 87Rb) NMR approach for direct detection of alkali metal ions bound to G-quadruplex DNA. This study is motivated by our recent discovery that alkali metal ions (Na+, K+, Rb+) tightly bound to G-quadruplex DNA are actually "NMR visible" in solution (Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337, 363). Here solution and solid-state NMR methods are developed for studying ion binding to the classic G-quadruplex structures formed by three DNA oligomers: d(TG4T), d(G4T3G4), and d(G4T4G4). The present study yields the following major findings. (1) Alkali metal ions tightly bound to G-quadruplex DNA can be directly observed by NMR in solution. (2) Competitive ion binding to the G-quadruplex channel site can be directly monitored by simultaneous NMR detection of the two competing ions. (3) Na+ ions are found to locate in the diagonal T4 loop region of the G-quadruplex formed by two strands of d(G4T4G4). This is the first time that direct NMR evidence has been found for alkali metal ion binding to the diagonal T4 loop in solution. We propose that the loop Na+ ion is located above the terminal G-quartet, coordinating to four guanine O6 atoms from the terminal G-quartet and one O2 atom from a loop thymine base and one water molecule. This Na+ ion coordination is supported by quantum chemical calculations on 23Na chemical shifts. Variable-temperature 23Na NMR results have revealed that the channel and loop Na+ ions in d(G4T4G4) exhibit very different ion mobilities. The loop Na+ ions have a residence lifetime of 220 micros at 15 degrees C, whereas the residence lifetime of Na+ ions residing inside the G-quadruplex channel is 2 orders of magnitude longer. (4) We have found direct 23Na NMR evidence that mixed K+ and Na+ ions occupy the d(G4T4G4) G-quadruplex channel when both Na+ and K+ ions are present in solution. (5) The high spectral resolution observed in this study is unprecedented in solution 23Na NMR studies of biological macromolecules. Our results strongly suggest that multinuclear NMR is a viable technique for studying ion binding to G-quadruplex DNA.  相似文献   

14.
A one-pot procedure using ammonium formate under palladium catalysis for the reductive dechlorination and reduction of nitro group of 4-chloro-8-nitro–quinoline derivatives has be successfully carried out. This has lead to the synthesis of bisquinoline–pyrrole oligoamide 1, which show significant G-quadruplex selectivity in preference to duplex DNA. The cooperativity between the bisquinoline and pyrrole oligoamide moieties for good binding affinity to G-quadruplex was proven by synthesizing 2 and 3 lacking a quinoline ring and pyrrole amide, respectively, and both show much reduce affinity to G-quadruplex. Altogether, the results demostrate that the appropriate combination of two chromophores to form the hybride can attenuate binding affinity and selectivity towards G-quadruplex, an important criteria for the rational drug design.  相似文献   

15.
A class of 9(10H)-acridone derivatives with terminal ammonium substituents at C2 (and C7) position(s) on the acridone ring were successfully synthesized. The relative affinities of the acridone compounds to G-quadruplex DNA have been investigated and the results showed that these compounds had a binding specificity for G-quadruplex over duplex sequences. The acridones with two terminal ammonium substituents had much more effects on the human telomeric G-quadruplex DNA than the corresponding acridone derivatives with one terminal ammonium substituent, and more positive charges introduced to the side chains can improve the formation and stabilization of the G-quadruplex.  相似文献   

16.
The heterogeneous binding behaviour between methylene blue (MB) and G-quadruplex, one kind of single-stranded (ss) DNA with specific guanine tetrads, has been thoroughly studied via electrochemical techniques. Positively charged MB interacted electrostatically with both G-quadruplex and normal ssDNA but the binding and dissociation kinetics between them were significantly different. Compared with ssDNA, G-quadruplex had a slower binding rate constant and dissociation rate constant with MB since there existed other different binding mechanisms between G-quadruplex and MB besides electrostatic interaction. This work might provide valuable information in the design and development of DNA sensors.  相似文献   

17.
朱隆懿  孙羽  王倩  吴师 《有机化学》2009,29(11):1700-1707
介绍了近几年国内外关于组装金属卟啉对杂环分子、DNA碱基以及RNA的分子识别的研究进展, 并简述了本课题组对金属卟啉与杂环及药物分子复合物的理论研究工作. 金属卟啉广泛存在于自然界和生物体中, 此识别过程对研究和模拟生命体中各种细胞之间的相互作用具有重要意义. 组装后的金属卟啉可通过轴向配位、氢键及π-π堆积作用等识别杂环分子. 金属卟啉对DNA的识别主要有四种作用方式, 而金属卟啉对DNA以及RNA分子的识别主要靠疏水作用力、静电力以及自堆叠作用. 卟啉阳离子与DNA的结合位点受主体侧链取代基的空间结构影响. 金属卟啉对药物分子的识别靠配位键和氢键进行, 以配位键结合的复合物通常具有更高的结合能.  相似文献   

18.
Herein, we report the design, synthesis and biophysical evaluation of novel 1,2,3-triazole-linked diethynyl-pyridine amides and trisubstituted diethynyl-pyridine amides as promising G-quadruplex binding ligands. We have used a Cu(I)-catalysed azide-alkyne cycloaddition click reaction to prepare the 1,2,3-triazole-linked diethynyl-pyridine amides. The G-quadruplex DNA binding properties of the ligands have been examined by using a F?rster resonance energy transfer (FRET) melting assay and surface plasmon resonance (SPR) experiments. The investigated compounds are conformationally flexible, having free rotation around the triple bond, and exhibit enhanced G-quadruplex binding stabilisation and specificity between intramolecular promoter G-quadruplex DNA motifs compared to the first generation of diaryl-ethynyl amides (J. Am. Chem. Soc. 2008, 130, 15950-15956). The ligands show versatility in molecular recognition and promising G-quadruplex discrimination with 2-50-fold selectivity exhibited between different intramolecular promoter G-quadruplexes. Circular dichroism (CD) spectroscopic analysis suggested that at higher concentration these ligands disrupt the c-kit2 G-quadruplex structure. The studies validate the design concept of the 1,3-diethynyl-pyridine-based scaffold and demonstrate that these ligands exhibit not only significant selectivity over duplex DNA but also variation in G-quadruplex interaction properties based on small chemical changes in the scaffold, leading to unprecedented differential recognition of different DNA G-quadruplex sequences.  相似文献   

19.
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the binding affinity and stoichiometry of small molecules with human telomeric G-quadruplex DNA. The binding-affinity order obtained for the (AGGGTT)(4) quadruplex was: Tel01>ImImImbetaDp>PyPyPygammaImImImbetaDp. The specific binding of Tel01 and PyPyPygammaImImImbetaDp in one system consisting of human telomeric G-quadruplex and duplex DNA was observed directly for the first time. This revealed that PyPyPygammaImImImbetaDp has a binding specificity for the duplex DNA, whereas Tel01 selectively recognizes the G-quadruplex DNA. Moreover, both ESI-MS and circular dichroism (CD) spectra indicated that Tel01 favored the formation and stabilization of the antiparallel G-quadruplex, and a structural transition of the (AGGGTT)(4) sequence from a coexistence of parallel and antiparallel G-quadruplexes to a parallel G-quadruplex induced by annealing.  相似文献   

20.
The interactions between human telomere sequence and a typical highly selective G-quadruplex ligand ThT were studied at the single-molecule level through α-hemolysin protein nanopore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号