首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram‐positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram‐negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB‐SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.  相似文献   

2.
Intoxication and infection caused by foodborne pathogens are important problems worldwide, and screening tests for multiple pathogens are needed because foods may be contaminated with multiple pathogens and/or toxic metabolites. We developed a 96-well microplate, multiplex antibody microarray method to simultaneously capture and detect Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. typhimurium), as well as a biomolecule (chicken immunoglobulin G or IgG employed as a proteinaceous toxin analog) in a single sample. Microarrayed spots of capture antibodies against the targeted analytes were printed within individual wells of streptavidin-coated polystyrene 96-multiwell microtiter plates and a sandwich assay with fluorescein- or Cy3-labeled reporter antibodies was used for detection. (Printing was achieved with a conventional microarray printing robot that was operated with custom-developed microplate arraying software.) Detection of the IgG was realized from ca. 5 to 25 ng/mL, and detection of E. coli O157:H7 and S. typhimurium was realized from ca. 106 to 109 and ca. 107 to 109 cells/mL, respectively. Multiplex detection of the two bacteria and the IgG in buffer and in culture-enriched ground beef filtrate was established with a total assay (including detection) time of ca. 2.5 h. Detection of S. typhimurium was largely unaffected by high concentrations of the other bacteria and IgG as well as the ground beef filtrate, whereas a small decrease in response was observed for E. coli O157:H7. The multiwell plate, multiplex antibody microarray platform developed here demonstrates a powerful approach for high-throughput screening of large numbers of food samples for multiple pathogens and toxins.  相似文献   

3.
Radioiodination of both S(−)BZM and LIS was carried out using n-bromosuccimide(NBS) as a mild oxidizing agent. The factors affecting on the radiochemical yield such as pH, reaction time, substrate concentration and oxidizing agent have been studied. The chromatographic separation of both 125IBZM and 125ILIS was carried out using HPLC and poly(acrylamide-acrylic acid) resin P(AAm-AA). The copolymer was prepared by a template polymerization of AA in aqueous solution on PAAm as a template polymer and in the presence of N,N-methylenebisacrylamide (NMBA) as a crosslinker using gamma rays as initiator. The purifications of tracers were carried out using prepared resin compared with TLC and HPLC. The effects of pH buffer, variable elution volumes, flow rate and temperature on the separation process of the resin efficiency have been studied.  相似文献   

4.
Salmonella bacteria are the major cause for the infection of 16 million people worldwide with typhoid fever each year. Antibiotic‐resistant Salmonella strains have been isolated from various food products. As a result, the development of ultrasensitive sensing technology for detection and new approaches for the treatment of infectious bacterial pathogens that do not rely on traditional therapeutic regimes is very urgent for public health, food safety, and the world economy. Driven by this need, we report herein a nanotechnology‐driven approach that uses antibody‐conjugated oval‐shaped gold nanoparticles to selectively target and destroy pathogenic bacteria. Our experiments have shown the use of a simple colorimetric assay, with an anti‐salmonella antibody conjugated to oval‐shaped gold nanoparticles, for the label‐free detection of S. typhimurium with an excellent detection limit (104 bacteria per mL) and high selectivity over other pathogens. When bacteria conjugated to oval‐shaped gold nanoparticles were exposed to near‐infrared radiation, a highly significant reduction in bacterial cell viability was observed due to photothermal lysis. Ideally, this nanotechnology‐based assay would have enormous potential for rapid, on‐site pathogen detection to avoid the distribution of contaminated foods.  相似文献   

5.
In order to clarify the kinetic role of oil‐soluble initiators in microemulsion polymerization, the oil‐in‐water (O/W) microemulsion polymerizations of styrene are carried out using four kinds of azo‐type oil‐soluble initiators with widely different water‐solubility. The results are compared with those observed when a water‐soluble initiator, potassium persulfate (KPS) is used. For all the oil‐soluble initiators used, the molecular weight of polymers and the average size of polymer particles do not change with the monomer conversion and the initial initiator concentration. The monomer conversion is expressed as a function of ri0.5t, where ri is the rate of radical generation in the whole reaction system and t is the reaction time. These characteristics are quite the same as those observed when KPS is used as an initiator. When the polymerizations are carried out with the rate of radical generation in the whole reaction system fixed at the same value, the rates of polymerization are almost the same for all the oil‐soluble initiators employed, irrespective of their water‐solubility, but are significantly lower (ca. 1/3) than that with KPS. Then, the following conclusions are given: (1) The radicals generated not only in the aqueous phase, but also in the micelle and polymer particle phase are almost equally effective for the polymerization. However, (2) only a small portion (ca. 1/9) of the radicals generated in both phases participate in the polymerization. (3) Bimolecular termination of a growing radical in the polymer particle with an entering radical and with a pair of radicals generated in the polymer particles is negligible, and hence, the molecular weight of polymers is determined only by chain transfer to monomer.  相似文献   

6.
Salmonella typhimurium is commonly described as a food‐borne pathogen. However, natural and drinking water are known to be important sources for the transmission of this pathogen in developing and developed countries. The standard method to determine Salmonella is laborious and many false positives are detected. To solve this, the present work was focused on the development of a capillary zone electrophoresis method coupled to ultraviolet detection for determination of Salmonella typhimurium in water (mineral and tap water). Separations were performed in less than 11 minutes using 4.5 mM Tris (hydroxymethyl)‐aminomethane, 4.5 mM boric acid and 0.1 mM ethylene diamine tetraacetate (pH 8.4) with 0.1% v/v poly ethylene oxide as separation buffer. The precision of the method was evaluated in terms of repeatability obtaining a relative standard deviation of 10.5%. Using the proposed method Salmonella typhimurium could be separated from other bacteria that could be present in water such as Escherichia coli. Finally, the proposed methodology was applied to determine Salmonella typhimurium in tap and mineral water.  相似文献   

7.
Salmonella typhimurium (S. typhimurium) is a major causative agent of foodborne illness worldwide. Cold plasma (CP) was used to inactivate S. typhimurium and to investigate the effect of CP on cell membrane lipids and oxidative injury of cells. Results indicated that the inactivation effect of CP on S. typhimurium was positively correlated with the treatment time and voltage. S. typhimurium was undetectable (total number of surviving colonies <2 log CFU/mL) after 5 min treatment with the voltage of 50 V. CP treatment caused damage to the cell membrane of S. typhimurium and the leakage of cell contents, and the relative content of unsaturated fatty acids in cell membrane decreased. Cell membrane lipids were oxidized; the malondialdehyde content increased from 0.219 nmol/mL to 0.658 nmol/mL; the catalase activity of S. typhimurium solution increased from 751 U/mL to 2542 U/mL; and the total superoxide dismutase activity increased from 3.076 U/mL to 4.54 U/mL, which confirmed the oxidative damage in S. typhimurium cell membrane caused by CP treatment. It was demonstrated that the potential application of plasma-mediated reactive oxygen species is suitable for destroying the structures of the cell membrane and ensuring the microbial safety of fresh food samples.  相似文献   

8.
A rapid method for detection of Salmonella typhimurium contamination in packaged alfalfa sprouts using solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) integrated with chemometrics was investigated. Alfalfa sprouts were inoculated with S. typhimurium, packed into commercial LDPE bags and stored at 10 + 2 °C for 0, 1, 2 and 3 days. Uninoculated sprouts were used as control samples. A SPME device was used to collect the volatiles from the headspace above the samples and the volatiles were identified using GC/MS. Chemometric techniques including linear discriminant analysis (LDA) and artificial neural network (ANN) were used as data processing tools. Numbers of Salmonella were followed using a colony counting method. From LDA, it was able to differentiate control samples from sprouts contaminated with S. typhimurium. The potential to predict the number of contaminated S. typhimurium from the SPME/GC/MS data was investigated using multilayer perceptron (MLP) neural network with back propagation training. The MLP comprised an input layer, one hidden layer, and an output layer, with a hyperbolic tangent sigmoidal transfer function in the hidden layer and a linear transfer function in the output layer. The MLP neural network with a back propagation algorithm could predict number of S. typhimurium in unknown samples using the volatile fingerprints. Good prediction was found as measured by a regression coefficient (R2 = 0.99) between actual and predicted data.  相似文献   

9.
In this study, we investigated the feasibility of using a novel volatile organic compound (VOC)-based metabolic profiling approach with a newly devised chemometrics methodology which combined rapid multivariate analysis on total ion currents with in-depth peak deconvolution on selected regions to characterise the spoilage progress of pork. We also tested if such approach possessed enough discriminatory information to differentiate natural spoiled pork from pork contaminated with Salmonella typhimurium, a food poisoning pathogen commonly recovered from pork products. Spoilage was monitored in this study over a 72-h period at 0-, 24-, 48- and 72-h time points after the artificial contamination with the salmonellae. At each time point, the VOCs from six individual pork chops were collected for spoiled vs. contaminated meat. Analysis of the VOCs was performed by gas chromatography/mass spectrometry (GC/MS). The data generated by GC/MS analysis were initially subjected to multivariate analysis using principal component analysis (PCA) and multi-block PCA. The loading plots were then used to identify regions in the chromatograms which appeared important to the separation shown in the PCA/multi-block PCA scores plot. Peak deconvolution was then performed only on those regions using a modified hierarchical multivariate curve resolution procedure for curve resolution to generate a concentration profiles matrix C and the corresponding pure spectra matrix S. Following this, the pure mass spectra (S) of the peaks in those region were exported to NIST 02 mass library for chemical identification. A clear separation between the two types of samples was observed from the PCA models, and after deconvolution and univariate analysis using N-way ANOVA, a total of 16 significant metabolites were identified which showed difference between natural spoiled pork and those contaminated with S. typhimurium.  相似文献   

10.
The electron spin resonance studies were carried out for 2 mm concentration of 14N‐labeled and 15N‐labeled 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐methoxycarbonyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl and their deuterated nitroxyl radicals using X‐band electron spin resonance spectrometer. The electron spin resonance line shape analysis was carried out. The electron spin resonance parameters such as linewidth, Lorentzian component, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were estimated. The deuterated nitroxyl radicals have narrow linewidth and an increase in Lorentzian component, compared with undeuterated nitroxyl radicals. The dynamic nuclear polarization factor was observed for all nitroxyl radicals. Upon 2H labeling, about 70% and 40% increase in dynamic nuclear polarization factor were observed for 14N‐labeled and 15N‐labeled nitroxyl radicals, respectively. The signal intensity ratio and g‐value indicate the isotropic nature of the nitroxyl radicals in pure water. Therefore, the deuterated nitroxyl radicals are suitable spin probes for in vivo/in vitro electron spin resonance and Overhauser‐enhanced magnetic resonance imaging modalities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The utilization of CE for monitoring bacteria–phage interaction was investigated in this study. Streptococcus thermophilus and Lactobacillus bulgaricus strains and their phages were used as model bacteria and phages for the purpose of validation in this study. CE with heterogeneous polymer polyethylene oxide was utilized for the separation of intact bacteria and investigation of phage–bacteria interaction. An intact phage detection was carried out with CZE by adding SDS in the running buffer. Calibration graphs of bacteria and phages were obtained with R2 values of 0.963 and 0.937, respectively. S. thermophilus strain was infected with its virulent phage B3‐X18 for investigation of phage–bacteria interaction. It was observed in capillary electropherogram that the culture was lysed depending on the multiplicity of infection value and it showed to be completely lysed when the multiplicity of infection value was 10. The interaction of S. thermophilus strain with L. bulgaricus phage was also investigated by using a CE and a microbiological method and it was observed that the L. bulgaricus phage attached itself to the cell wall of S. thermophilus strain without damaging the cell.  相似文献   

12.
《Analytical letters》2012,45(17):3219-3231
Abstract

Previously developed assays for Salmonella typhimurium and staphylococcal enterotoxin B (SEB) were combined into a single multiplexed test and integrated into a fully automated prototype of the NRL Array Biosensor. Tests were performed on 216 blind samples of water, apple juice, and milk spiked with SEB (1–10,000 pg/ml) and S. typhimurium (5×103?5×107 colony‐forming units/ml). SEB and S. typhimurium were routinely detected in both water and apple juice at 100 pg/ml and 5×105 colony‐forming units/ml respectively. Inclusion of milk as a sample matrix decreased the sensitivity of the assays by an order of magnitude.  相似文献   

13.
Pathogenic bacteria have become a serious socio‐economic concern. Immunomagnetic separation‐based methods create new possibilities for rapidly recognizing many of these pathogens. The aim of this study was to use superparamagnetic particles‐based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II) containing proteins (Zn‐proteins). The isolated bacteria were immediately purified and disintegrated prior to immunoextraction of Zn‐proteins by superparamagnetic beads modified with chicken anti‐Zn(II) antibody. S. aureus culture was treated with ZnCl2. Optimal pathogen isolation and subsequent disintegration assay steps were carried out with minimal handling. (i) Optimization of bacteria capturing: Superparamagnetic microparticles composed of human IgG were used as the binding surface for acquiring live S. aureus. The effect of antibodies concentration, ionic strength, and incubation time was concurrently investigated. (ii) Optimization of zinc proteins isolation: pure and intact bacteria isolated by the optimized method were sonicated. The extracts obtained were subsequently analyzed using superparamagnetic particles modified with chicken antibody against zinc(II) ions. (iii) Moreover, various types of bacterial zinc(II) proteins precipitations from particle–surface interactions were tested and associated protein profiles were identified using SDS‐PAGE. Use of a robotic pipetting system sped up sample preparation to less than 4 h. Cell lysis and Zn‐protein extractions were obtained from a minimum of 100 cells with sufficient yield for SDS‐PAGE (tens ng of proteins). Zn(II) content and cell count in the extracts increased exponentially. Furthermore, Zn(II) and proteins balances were determined in cell lysate, extract, and retentate.  相似文献   

14.
Pathogen detection is important for health and safety reasons. Several outbreaks all over the world have shown the need for rapid, qualitative, quantitative, and, particularly, multianalyte detection systems. Hence, a multichannel flow-through chemiluminescence microarray chip for parallel detection of pathogenic bacteria was developed. The disposable chip made of acrylonitrile–butadiene–styrene (ABS) copolymer was devised as a support for a multiplexed sandwich immunoassay. Calibration and measurement was possible in one experiment, because the developed chip contains six parallel flow-through microchannels. Polyclonal antibodies against the pathogenic bacteria Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila were immobilized on the chip by microcontact printing in order to use them as specific receptors. Detection of the captured bacteria was carried out by use of specific detection antibodies labelled with biotin and horseradish peroxidase (HRP)–streptavidine conjugates. The enzyme HRP generates chemiluminescence after adding luminol and hydrogen peroxide. This signal was observed by use of a sensitive CCD camera. The limits of detection are 1.8 × 104 cells mL−1 for E. coli O157:H7, 7.9 × 104 cells mL−1 for L. pneumophila, and 2.0 × 107 cells mL−1 for S. typhimurium. The overall assay time for measurement and calibration is 18 min, enabling very fast analysis.   相似文献   

15.
《Analytical letters》2012,45(12):2048-2060
A Salmonella typhimurium (S. typhimurium) biosensor based on a fluorescence resonance energy transfer between upconversion and gold nanoparticles is reported. NaYF4:Yb,Er nanoparticles were synthesized and modified with a S. typhimurium target DNA complementary sequence to form the sensor. Gold nanoparticles were modified with a S. typhimurium target DNA complementary sequence to constitute the quenching probe. In the presence of S. typhimurium target DNA, gold and upconversion nanoparticles formed a sandwich complex, and the upconversion fluorescence resonance energy transfer occurred. Under the optimal conditions, the relative fluorescence was proportional to the concentration of S. typhimurium target DNA in the range of 0.001 pmol/L to 1 pmol/L with a limit of detection of 1 fM. S. typhimurium was detected from 30 cfu/mL to 5150 cfu/mL with a detection limit of 3 cfu/mL. The procedure was successfully applied to determine S. typhimurium in milk and validated by a traditional plate counting method. The developed upconversion fluorescence resonance energy transfer method is simple, fast, sensitive, specific, and incorporates nanomaterials in biosensor design.  相似文献   

16.
A quantum-mechanical study of internal rotation around C-C· bond in n-alkyl radicals from C2H5 to C7H15 was carried out using B3LYP/6-311++G(3df, 3pd) approach. The values of barriers and local minima were found. Analysis of the distribution of electron density was carried out. By application of the methods of mathematical statistics different types of representation of the potential functions of internal rotation were analyzed and the optimal approximation was revealed. Contributions to the thermodynamic properties of the considered radicals were calculated. The generalized function of internal rotation was suggested for the radicals of the type C n H2n+1, n > 4.  相似文献   

17.
Lytic bacteriophages and “Disruptor” 4610 filters made of nanoalumina fibers were used for specific determination of determination of bacterial contamination by ATP assay. As a model system the system of bacteriophage T4-E. coli B was used as a model object. Modifications of the method allow either the quantitative detection of E. coli B with a detection limit as low as 1.0 × 103 CFU/ml or detection of E. coli B in the presence of 60-fold excess of S. typhimurium. Both modifications showed much better performance than the standard methods based on the use of bacteriophage T4. The increase in testing time was insignificant.  相似文献   

18.
Liposome-based immunostrip for the rapid detection of Salmonella   总被引:1,自引:0,他引:1  
Salmonellae are ubiquitous human pathogens, which pose a danger to the elderly and children. Due to the increased number of outbreaks of human illness associated with the consumption of contaminated products in the USA and many other countries, there is an urgent need to develop rapid assays to detect common food-borne pathogens. This study demonstrates the feasibility of using a detectable label comprising methyl blue (MB), a visible dye, entrapped inside liposomes. Immunoliposomes tagged with anti-Salmonella common structural antigens (CSA) antibody encapsulating MB dye were prepared and used as the signal amplifier for the development of a field-portable colorimetric immunoassay to detect Salmonellae. Tapping mode atomic force microscopy (TMAFM), a scanning probe technique, was utilized to demonstrate the presence of anti-Salmonella antibody at the thus-prepared liposome. A plastic-backed nitrocellulose strip with two immobilized zones formed the basis of a sandwich assay. The first zone was the antigen capture zone (AC zone), used in a sandwich (noncompetitive) assay format; the other was the biotin capture zone (BC zone), used as a quality control index for the strip assay. During the capillary migration of the wicking reagent containing 80 μL of immunoliposomes and 40 μL of the test sample (heat-killed S. typhimurium), sample pathogens with surface-bound immunoliposomes were captured at the AC zone, while the unbound immunoliposomes continued to migrate and bind to the anti-biotin antibodies coated on the BC zone. The color density of the AC zone was directly proportional to the number of Salmonella typhimurium in the test sample. The detection limit of the current assay with heat-killed Salmonella typhimurium was 1,680 cells. The cross-reactivity of the proposed immunoassay was also investigated, and pathogens including E. coli O157:H7 and Listeria genus specific caused no interference with the detection of Salmonella typhimurium. Shi-Chin Zeng and Wei-Hsiang Tseng contributed equally to this publication.  相似文献   

19.
Detection of pathogenic bacteria that pose a great risk to human health requires a rapid, convenient, reliable, and sensitive detection method. In this study, we developed a selective filtration method using monoclonal antibody (MAb)–magnetic nanoparticle (MNP) nanocomposites for the rapid and sensitive colorimetric detection of Salmonella typhimurium. The method contains two key steps: the immunomagnetic separation of the bacteria using MAb–MNP nanocomposites and the filtration of the nanocomposite-bound bacteria. Color signals from the nanocomposites remaining on the membrane were measured, which reflected the amount of bacteria in test samples. Immunomagnetic capture efficiencies of 8 to 90 % for various concentrations of the pathogen (2?×?104–2?×?101 cells) were obtained. After optimization of the method, 2?×?101 cells of S. typhimurium in pure culture solution was detectable as well as in artificially inoculated vegetables (100 cells/g). The method was confirmed to be highly specific to S. typhimurium without cross-reaction to other pathogenic bacteria and could be concluded within 45 min, yielding results in a shorter or similar time period as compared with recently reported antibody immobilized on magnetic-particle-based methods. This study also demonstrated direct application of MAb–MNP nanocomposites without a dissociation step of bacteria from magnetic beads in colorimetric assays in practice.  相似文献   

20.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号