首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrokinetically-driven flow mixing in microchannels with wavy surface   总被引:2,自引:0,他引:2  
This paper investigates the mixing characteristics of electrokinetically-driven flow in microchannels with different wavy surface configurations. Numerical simulations are performed to analyze the influence of the wave amplitude and the length of the wavy section on the mixing efficiency within the microchannel. Typically, straight channels have a poor mixing performance because the fluid flow is restricted to the low Reynolds number regime, and hence mixing takes place primarily as a result of diffusion effects. However, the wavy surfaces employed in the current microchannels increase the interfacial contact area between the two species in the microchannel and therefore improve the mixing efficiency. The mixing performance is further enhanced by the application of a heterogeneous charge pattern on the wavy surfaces. The numerical results show that the heterogeneous charge pattern generates flow circulations near the microchannel walls. These circulations are shown to provide an effective enhancement in the mixing performance. Overall, the present results show that the mixing performance is improved by increasing the magnitude of the heterogeneous surface zeta potential upon the wavy surface or by increasing the wave amplitude or the length of the wavy section in the microchannel.  相似文献   

2.
Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.  相似文献   

3.

In this numerical study, laminar flow of water nanofluid/GNP–SDBS (graphene nanoplatelet–sodium dodecylbenzene sulfonate) for 0–0.1% solid nanoparticles mass fraction was investigated for Reynolds numbers of 50–1000 in 3D space via finite volume method. In the newly proposed microchannel design, the cooling fluid is moving in countercurrent in the upper and lower layers of the microchannels, and there are cavities and sinusoidal routes on the solid walls of the microchannel, and the presence of rectangular ribs on the flow centerline along the fluid path enhances mixing for cooling fluid and creates better heat transfer for warm surfaces. The results of this study show that this special design of the microchannel can have a substantial increase in Nusselt number and heat transfer so that in the considered geometry by adding solid nanoparticles mass fraction it is possible to increase average Nusselt number for each Reynolds number by approximately 20%. Also, the mixing of the fluid because of formation of secondary flows has a strong effect on making the temperature distribution uniform in the cooling fluid and solid bed (wall) of the microchannel, especially in the lower layer. The upper layer of the microchannel always has a lower temperature due to indirect contact with heat flux compared with the lower layer. In this study, by increasing Reynolds number and mass fraction of solid nanoparticles the Nusselt number is increased and heat resistance of the lower wall of the microchannel is reduced. Based on the investigation of flow field and heat transfer, the use of the proposed design of the microchannel is recommended for Reynolds number less than 300.

  相似文献   

4.
An easy-to-use and low cost microreactor made of polymethylmethacrylate was mechanically fabricated with a microchannel (200 microm x 200 microm). The laminar flow behavior was investigated by visualizing the flow of red and green aqueous solutions. Digitized color images from a CCD camera were analyzed by resolving the color in RGB mode. Numeric data from red and green color components in the images could reveal the fluidic behavior in the microchannel because the spatial spectroscopic information corresponds to the color solution flows. Effects of corner shapes in a turn, flow rate and surface roughness were observed on the mixing of the laminar flows. A right angle turn and unevenness of +/-10% of the inner wall surface almost mixed the two color laminar flows.  相似文献   

5.
Chen JK  Yang RJ 《Electrophoresis》2007,28(6):975-983
In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.  相似文献   

6.
Microfluidic systems enable superior control of fluidics. We have developed a novel size-separation method utilizing secondary flow within a microchannel. Using confocal fluorescence microscopy and computer simulation, we confirmed that separation occurred as a result of specific molecular localization in the curving part of the microchannel. Maximum separation efficiency was achieved by optimizing microchannel design and flow rate for individual separation targets. In addition, more effective separation was achieved by use of plural microchannel curves. This method was used for sequence-selective DNA sensing. Double-stranded DNA formed by hybridization between target DNA and a complementary probe had different elution profiles from those of the single-stranded non-complementary sequence. Moreover, the response depends on the length of the DNA molecules. This method does not require immobilization of either probe or target DNA, because all reactions occurred in the solution phase. Such features may reduce experimental error and the difference between data from different operators.  相似文献   

7.
Jen CP  Wu CY  Lin YC  Wu CY 《Lab on a chip》2003,3(2):77-81
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.  相似文献   

8.
A novel micro-mixer based on the induced-charge electrokinetic motion of an electrically conducting particle is proposed and numerically demonstrated in this paper. For most microfluidic applications, it is desired to mix different streams of solutions rapidly in a continuous flow mode. Therefore, in this work, we consider a mixing chamber containing an electrically conducting particle and the mixing chamber is located in the middle of a microchannel. Vortices are generated around the electrically conducting particle in an aqueous solution due to the interaction of the applied electric field and the induced surface charge on the particle. These vortices will enhance significantly the mixing of different solutions around the particle. The effectiveness of mixing the two streams entering the mixing chamber is numerically studied as functions of the applied electric field. Excellent mixing can be achieved in this system under two perpendicularly applied electric fields. The proposed micro-mixer is simple and easy to be fabricated for lab-on-a-chip applications.  相似文献   

9.
This paper presents a numerical study of controlling the flow rate and the concentration in a microchannel network by utilizing induced-charge electrokinetic flow (ICEKF). ICEKF over an electrically conducting surface in a microchannel will generate vortices, which can be used to adjust the flow rates and the concentrations in different microchannel branches. The flow field and concentration field were studied under different applied electric fields and with different sizes of the conducting surfaces. The results show that, by using appropriate size of the conducting surfaces in appropriate locations, the microfluidic system can generate not only streams of the same flow rate or linearly decreased flow rates in different channels, but also different, uniform concentrations within a short mixing length quickly.  相似文献   

10.
We developed a confocal microscopic method for a quantitative evaluation of the mixing performance of a three-dimensional microfluidic mixer. We fabricated a microfluidic baker's transformation (MBT) mixer as a three-dimensional passive-type mixer for the efficient mixing of solutions. Although the MBT mixer is one type of ideal mixers, it is hard to evaluate its mixing performance, since the MBT mixer is based on several cycles of complicated three-dimensional microchannel structures. We applied the method developed here to evaluate the mixing of water and a fluorescein isothiocyanate (FITC; diffusion coefficient, 4.9 × 10(-10) m(2) s(-1)) solution by the MBT mixer. This method enables us to capture vertical section images for the fluid distributions of FITC and water at different three-dimensional microchannel structures of the MBT device. These images are in good agreement with those of mixing images based on numerical simulations. The mixing ratio could be calculated by the fluorescence intensity at each pixel of the vertical section image; complete mixing is recognized by a mixing ratio of more than 90%. The mixing ratios are measured at different cycles of the MBT mixer by changing the flow rate; the mixing performance is evaluated by comparisons with the mixing ratio of the straight microchannel without the MBT mixer.  相似文献   

11.
We developed a novel flow control system for a nanofluidic chemical process. Generally, flow control in nanochannels is difficult because of its high-pressure loss with very small volume flow rate. In our flow control method, liquid pressure in a microchannel connected to the nanochannels is regulated by utilizing a backpressure regulator. The flow control method was verified by using simple structured microchip, which included parallel nanochannels. We found that the observed flow rate was three times lower than the value expected from Hagen-Poiseuille's equation. That implied a size-dependent viscosity change in the nanochannels. Then, we demonstrated mixing of two different fluorescent solutions in a Y-shaped nanochannel and also a proton exchange reaction in the Y-shaped nanochannel. The flow control method will contribute to further integration of nanochemical systems.  相似文献   

12.
Nguyen NT  Huang X 《Lab on a chip》2005,5(11):1320-1326
This paper theoretically and experimentally investigates a micromixer based on combined hydrodynamic focusing and time-interleaved segmentation. Both hydrodynamic focusing and time-interleaved segmentation are used in the present study to reduce mixing path, to shorten mixing time, and to enhance mixing quality. While hydrodynamic focusing reduces the transversal mixing path, time-interleaved sequential segmentation shortens the axial mixing path. With the same viscosity in the different streams, the focused width can be adjusted by the flow rate ratio. The axial mixing path or the segment length can be controlled by the switching frequency and the mean velocity of the flow. Mixing ratio can be controlled by both flow rate ratio and pulse width modulation of the switching signal. This paper first presents a time-dependent two-dimensional analytical model for the mixing concept. The model considers an arbitrary mixing ratio between solute and solvent as well as the axial Taylor-Aris dispersion. A micromixer was designed and fabricated based on lamination of four polymer layers. The layers were machined using a CO2 laser. Time-interleaved segmentation was realized by two piezoelectric valves. The sheath streams for hydrodynamic focusing are introduced through the other two inlets. A special measurement set-up was designed with synchronization of the mixer's switching signal and the camera's trigger signal. The set-up allows a relatively slow and low-resolution CCD camera to freeze and to capture a large transient concentration field. The concentration profile along the mixing channel agrees qualitatively well with the analytical model. The analytical model and the device promise to be suitable tools for studying Taylor-Aris dispersion near the entrance of a flat microchannel.  相似文献   

13.
Park HM  Lee WM 《Lab on a chip》2008,8(7):1163-1170
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.  相似文献   

14.
Kim DS  Lee SH  Kwon TH  Ahn CH 《Lab on a chip》2005,5(7):739-747
Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number (Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other terms, lamination) mechanism is obtained by the successive arrangement of "F"-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.  相似文献   

15.
N Sasaki  T Kitamori  HB Kim 《Electrophoresis》2012,33(17):2668-2673
The mixing of fluids using AC electrothermal flow (AC-ETF) is presented. A pair of coplanar electrodes with a sinusoidal interelectrode gap was used to enhance the mixing in a microchannel. To demonstrate the performance of the mixer, conventional dilution experiments were conducted using Texas Red-labeled dextran. The dependence of mixing on the salt concentration (10(-3) ~ 10(-1) mol dm(-3) ) of the solutions and frequency (100 kHz ~ 5 MHz) of the applied voltage were investigated. AC-ETF was responsible for the mixing at salt concentrations >10(-2) mol dm(-3) , whereas the effect of AC-EOF was suggested to play a role at concentrations <10(-2) mol dm(-3) in the low-frequency region. The fluorogenic reaction of human serum albumin (HSA) with SYPRO Red in the mixer was also examined, and results showed that enrichment of fluorescence intensity and an almost uniform distribution of stained HSA were achieved. The present mixer can be employed as a powerful tool to facilitate efficient chemical and biomedical analysis on microfluidic devices.  相似文献   

16.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

17.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.  相似文献   

18.
微流控芯片中形成的微液滴粒径均一、可控,与传统的连续流体系相比,具有能实现试剂的快速混合、通量更高等优点.本文介绍了微流控芯片中由微通道控制的微液滴的形成、分裂、合并、混合、分选和捕获等微液滴操纵技术,以及微液滴技术在纳米粒子、聚合物微粒的合成、纳米粒子自组装、蛋白质结晶研究和DNA、细胞分析等领域的研究进展.  相似文献   

19.
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.  相似文献   

20.
Instability occurs in the electrokinetic flow of fluids with conductivity and/or permittivity gradients if the applied electric field is beyond a critical value. Understanding such an electrokinetic instability is significant for both improved transport (via the suppressed instability) and enhanced mixing (via the promoted instability) of liquid samples in microfluidic applications. This work presents the first study of Joule heating effects on electrokinetic microchannel flows with conductivity gradients using a combined experimental and numerical method. The experimentally observed flow patterns and measured critical electric fields under Joule heating effects to different extents are reasonably predicted by a depth-averaged numerical model. It is found that Joule heating increases the critical electric field for the onset of electrokinetic instability because the induced fluid temperature rise and in turn the fluid property change (primarily the decreased permittivity) lead to a smaller electric Rayleigh number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号