首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh–Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength–coupling radius plane, which show strong multistability of chimera states, are explored.  相似文献   

2.
The collective dynamics of Kuramoto oscillators with a positive correlation between the incoherent and fully coherent domains in clustered scale-free networks is studied. Emergence of chimera states for the onsets of explosive synchronization transition is observed during an intermediate coupling regime when degree-frequency correlation is established for the hubs with the highest degrees. Diagnostic of the abrupt synchronization is revealed by the intrinsic spectral properties of the network graph Laplacian encoded in the heterogeneous phase space manifold, through extensive analytical investigation, presenting realistic MC simulations of nonlocal interactions in discrete time dynamics evolving on the network.  相似文献   

3.
The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.  相似文献   

4.
We review chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desynchronized) dynamics in networks of identical oscillators. We focus on chimera states involving amplitude as well as phase dynamics, complex topologies like small-world or hierarchical (fractal), noise, and delay. We show that a plethora of novel chimera patterns arise if one goes beyond the Kuramoto phase oscillator model. For the FitzHugh-Nagumo system, the Van der Pol oscillator, and the Stuart-Landau oscillator with symmetry-breaking coupling various multi-chimera patterns including amplitude chimeras and chimera death occur. To test the robustness of chimera patterns with respect to changes in the structure of the network, regular rings with coupling range R, small-world, and fractal topologies are studied. We also address the robustness of amplitude chimera states in the presence of noise. If delay is added, the lifetime of transient chimeras can be drastically increased.  相似文献   

5.
Chimera states are remarkable spatiotemporal patterns in which coherence coexists with incoherence. As yet, chimera states have been considered as nongeneric, since they emerge only for particular initial conditions. In contrast, we show here that in a network of globally coupled oscillators delayed feedback stimulation with realistic (i.e., spatially decaying) stimulation profile generically induces chimera states. Intriguingly, a bifurcation analysis reveals that these chimera states are the natural link between the coherent and the incoherent states.  相似文献   

6.
The spontaneous occurrence of heterogeneous behaviors in homogeneous systems is an intriguing phenomenon. Recently, a remarkable heterogeneous behavior, called “chimera states”, which consists of spatially coherent and incoherent domains, has been studied in a great variety of systems including physical, chemical, biological, or optical. In this paper, chimera states in FitzHugh–Nagumo (FHN) neural networks are investigated. The identical FHN neurons are assigned in a ring and nonlocally coupled by attractive and repulsive couplings. We show that, the chimera states can be induced by the cooperation of nonlocally attractive and repulsive interactions between these neurons. Moreover, depending on the strength and range of attractive or repulsive couplings, the neural networks display different spatiotemporal behaviors, including chimera states, multi-cluster (MC) chimera states, traveling waves, traveling coherent states, solitary states, bursting synchronizations, and synchronizations. These results suggest that attractive and repulsive couplings may play a crucial role in mediating dynamic behavior of neural networks, and these results could be useful in understanding and predicting the rich dynamics of neural networks.  相似文献   

7.
We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results.  相似文献   

8.
Study of the synchronization in the network of gene oscillator network has vital importance in understanding of rhythmicity of molecular and cellular activities. In this paper, we analyze a network of linearly coupled genetic oscillators in a multiplex structure. The coupling strength values are changed and the coupling range is considered to be fixed, but different in the two layers. The analyses are done in two cases of periodic and chaotic oscillations. By computing the statistical measures, the interlayer and intralayer synchronization states are studied. The results show that the layer with higher coupling range has more enhanced synchrony and is less affected by the turbulent behavior of the other layer. On the other hand, the layer with lower coupling range approaches synchronization by strengthening the interlayer and intralayer couplings. The interlayer synchronization is also achieved in high coupling strength values.  相似文献   

9.
We study the influence of the initial topology of connections on the organization of synchronous behavior in networks of phase oscillators with adaptive couplings. We found that networks with a random sparse structure of connections predominantly demonstrate the scenario as a result of which chimera states are formed. The formation of chimera states retains the features of the hierarchical organization observed in networks with global connections [D.V. Kasatkin, S. Yanchuk, E. Schöll, V.I. Nekorkin, Phys. Rev. E 96, 062211 (2017)], and also demonstrates a number of new properties due to the presence of a random structure of network topology. In this case, the formation of coherent groups takes a much longer time interval, and the sets of elements that form these groups can be significantly rearranged during the evolution of the network. We also found chimera states, in which along with the coherent and incoherent groups, there are subsets, whose different elements can be synchronized with each other for sufficiently long periods of time.  相似文献   

10.
Chimera states are particular trajectories in systems of phase oscillators with nonlocal coupling that display a spatiotemporal pattern of coherent and incoherent motion. We present here a detailed analysis of the spectral properties for such trajectories. First, we study numerically their Lyapunov spectrum and its behavior for an increasing number of oscillators. The spectra demonstrate the hyperchaotic nature of the chimera states and show a correspondence of the Lyapunov dimension with the number of incoherent oscillators. Then, we pass to the thermodynamic limit equation and present an analytic approach to the spectrum of a corresponding linearized evolution operator. We show that, in this setting, the chimera state is neutrally stable and that the continuous spectrum coincides with the limit of the hyperchaotic Lyapunov spectrum obtained for the finite size systems.  相似文献   

11.
提出了基于延迟非相干光反馈与非相干光注入的级联混沌同步方案,与相干方案相比,该方案不需要频率完全匹配.数值研究结果表明,在其他参量匹配的情况下,发送机与接收机能实现完全同步.通过混沌键控方法,实现了信息的编码与解码.由于该级联方案具有非相干,宽带宽和多信息点传输的特点,所以在物理实现上很有吸引力,在全光中继通信方面也存在着很大的潜力.  相似文献   

12.
We consider the regime of strong light-matter coupling in an organic microcavity, where large Rabi splitting can be achieved. As has been shown, the excitation spectrum of such a structure, besides coherent polaritonic states, contains a number of strongly spatially localized incoherent excited states. These states form the majority of the excited states of the microcavity and are supposed to play the decisive role in the relaxation dynamics of the excitations in the microcavity. We consider the non-radiative transition from an incoherent excited state into one of the coherent states of the lower polaritonic branch accompanied by emission of a high-energy intramolecular phonon. It is shown that this process may determine the lifetime of incoherent excited states in the microcavity. This observation may be important in the discussion of pump–probe experiments with short pulses. This process may also play an important role for the population of the lowest energy states in organic microcavities, and hence in the problem of condensation of cavity polaritons.  相似文献   

13.
We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counterintuitive mechanism of "cooling by heating." In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the optomechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counterintuitive effect in optomechanical systems with present technology is sketched.  相似文献   

14.
We study collective phenomena in nonhomogeneous cardiac cell culture models, including one- and two-dimensional lattices of oscillatory cells and mixtures of oscillatory and excitable cells. Individual cell dynamics is described by a modified Luo-Rudy model with depolarizing current. We focus on the transition from incoherent behavior to global synchronization via cluster synchronization regimes as coupling strength is increased. These regimes are characterized qualitatively by space-time plots and quantitatively by profiles of local frequencies and distributions of cluster sizes in dependence upon coupling strength. We describe spatio-temporal patterns arising during this transition, including pacemakers, spiral waves, and complicated irregular activity.  相似文献   

15.
Pattern synchronization in a two-layer neuronal network is studied. For a single-layer network of Rulkov map neurons, there are three kinds of patterns induced by noise. Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way; however, for small and large noise intensities there exist excitable patterns and disordered patterns, respectively. For a neuronal network coupled by two single-layer networks with noise intensity differences between layers, we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases. The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.  相似文献   

16.
The time dependence of correlations between the photons emitted from a microcavity with an embedded quantum dot under incoherent pumping is studied theoretically. Analytic expressions for the second-order correlation function g (2)(t) are presented in strong and weak coupling regimes. The qualitative difference between the incoherent and coherent pumping schemes in the strong coupling case is revealed: under incoherent pumping, the correlation function demonstrates pronounced Rabi oscillations, but in the resonant pumping case, these oscillations are suppressed. At high incoherent pumping, the correlations decay monoexponentially. The decay time nonmonotonically depends on the pumping value and has a maximum corresponding to the self-quenching transition.  相似文献   

17.
The kidney plays an essential role in our body, mainly by controlling secretion and reabsorption of water and salts. The kidneys consist of a large number of nephrons which are the functional units of the kidney. The interactions between these nephrons induce different behaviors which can be considered by a dynamical model. In this paper, a network of coupled nephron models and its dynamics is investigated. Numerical simulations of the network reveal various types of dynamical patterns depending on the coupling function and strength. One of the observed phenomenon is the emergence of chimera state. A chimera state is defined by the coexistence of coherent and incoherent groups in a network of identical oscillators. The occurrence of the chimera state can be related to the situation of disturbed synchronous oscillation of the TGF-mediated proximal pressure.  相似文献   

18.
We consider the simplest network of coupled non-identical phase oscillators capable of displaying a "chimera" state (namely, two subnetworks with strong coupling within the subnetworks and weaker coupling between them) and systematically investigate the effects of gradually removing connections within the network, in a random but systematically specified way. We average over ensembles of networks with the same random connectivity but different intrinsic oscillator frequencies and derive ordinary differential equations (ODEs), whose fixed points describe a typical chimera state in a representative network of phase oscillators. Following these fixed points as parameters are varied we find that chimera states are quite sensitive to such random removals of connections, and that oscillations of chimera states can be either created or suppressed in apparent bifurcation points, depending on exactly how the connections are gradually removed.  相似文献   

19.
Yan-Liang Jin 《中国物理 B》2021,30(12):120505-120505
Explosive synchronization (ES) is a first-order transition phenomenon that is ubiquitous in various physical and biological systems. In recent years, researchers have focused on explosive synchronization in a single-layer network, but few in multi-layer networks. This paper proposes a frequency-weighted Kuramoto model in multi-layer complex networks with star connection between layers and analyzes the factors affecting the backward critical coupling strength by both theoretical analysis and numerical validation. Our results show that the backward critical coupling strength of each layer network is influenced by the inter-layer interaction strength and the average degree. The number of network layers, the number of nodes, and the network topology can not directly affect the synchronization of the network. Enhancing the inter-layer interaction strength can prevent the emergence of explosive synchronization and increasing the average degree can promote the generation of explosive synchronization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号