首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PANDA2 is a code for the minimum-weight design of perfect and imperfect elastic stiffened panels and shells made of composite laminates and subjected to multiple sets of in-plane loads, edge moments, normal pressure, and temperature. The scope of PANDA2 is increased to include global optimization and the capability to handle isogrid stiffening. The enhanced program is used to find global optimum designs of internally T-isogrid and internally T-ring stiffened perfect and imperfect isotropic cylindrical shells under uniform external pressure. For the cases studied, it is found that for the perfect optimized shells the isogrid stiffening is important but the rings are not, whereas the opposite holds for the optimized shells with an initial general buckling modal imperfection of amplitude equal to one per cent of the shell radius  相似文献   

2.
In the present paper, the buckling behavior of clamped thin shallow spherical shells under external pressure is studied. Seventy-nine plastic shells formed by thermovacuum process were tested. The distributions of initial geometrical imperfections and vertical displacements were minutely measured with a differential transformer. It was possible to control the symmetrical initial geometrical imperfection of each specimen.Results indicate that the buckling phenomena of shallow spherical shells vary greatly with the symmetrical initial imperfection parameter η. In the case of the geometrical parameter λ larger than 5.5, the amplitude of the asymmetrical displacement component with the bifurcation buckling wave calculated by Huang becomes large immediately before buckling. The validity of Huang's theory for an initially perfect shell is experimentally demonstrated.  相似文献   

3.
This paper deals with the effects of initial geometric uni-directional imperfections on vibrations of a pressurized spherical shell or spherical cap. The analysis is based upon shallow shell theory. Frequency vs applied pressure interaction curves are plotted for various values of the imperfection amplitude. Imperfections are shown to have a severe effect in reducing the natural frequencies similar to that demonstrated in the buckling behavior of spherical shells.  相似文献   

4.
本文利用渐近迭代法获得了边界弹性支撑的功能梯度扁球壳的非线性屈曲问题的理论解.假设材料组分体积分数沿壳体厚度方向呈sigmoid幂函数变化,边界上考虑一般的弹性支撑约束.基于经典的薄壳理论和几何非线性关系,导出了S型功能梯度扁球壳的非线性屈曲问题的控制方程.采用渐近迭代法通过两次迭代得到了无量纲挠度和均布荷载之间的非线性特征关系.通过与已有有限元方法和其他数值方法的结果对比,验证了本文解的有效性和高精度.同时,通过计算阐述了缺陷因子、材料参数、边界约束系数及特征几何参数对壳体临界屈曲荷载的影响.  相似文献   

5.
针对薄壁圆筒壳结构轴压屈曲载荷的缺陷敏感性以及真实几何缺陷的不确定性,提出一种基于实测缺陷数据和极大熵原理的初始缺陷建模与屈曲载荷预测方法。首先,将初始几何缺陷视为二维随机场,并利用实测缺陷数据和Karhunen-Loève展开法将初始缺陷的随机场建模转化为随机向量的建模;其次,利用极大熵方法确定随机向量的概率分布;最后,基于所构建的初始缺陷随机模型,利用MCMC抽样方法和确定性屈曲分析方法,进行随机屈曲分析并给出基于可靠度的屈曲载荷折减因子。数值算例表明,与直接假设随机场相关结构的方法相比,本文方法的结果是对薄壁圆筒壳屈曲载荷的一个更无偏估计。  相似文献   

6.
7.
李建宇  杨坤  王博  张丽丽 《力学学报》2023,55(4):1028-1038
具有不确定性特征的初始缺陷被认为是导致薄壳结构实际临界载荷值与理论解不相符并呈现分散特征的主要原因.对实际薄壳结构初始缺陷的建模至少需要考虑两个方面的不确定性量化,一是对缺陷分布形式和幅值等固有随机性的量化,二是对小样本量和不准确测量所导致缺陷统计量的不确定性的量化.本文在利用随机场的Karhunen-Loeve展开法对薄壳初始几何缺陷建模的基础上,提出一种基于极大熵原理的缺陷建模方法.首先,采用极大熵分布来估计Karhunen-Loeve随机变量的概率密度函数,以适应不能使用高斯随机场进行缺陷随机场建模的情况.随后,通过将经典的等式约束极大熵模型扩展为区间约束极大熵模型,实现对实际工程中仅能获得少量薄壳结构几何缺陷样本数据所导致的认知不确定性的量化.最后,将所提方法用于对国际缺陷数据库的A-Shell进行缺陷建模和临界载荷预测.研究表明,所提基于区间约束极大熵原理的随机场建模方法在能够有效表征实测数据高阶矩信息的同时,还具备量化小样本数据导致的认知不确定性的能力,并且高斯随机场模型和基于等式约束极大熵原理的随机场模型是本文所提建模方法的两种特殊情况.  相似文献   

8.
缺陷敏感性是薄壁筒壳结构设计所面临的主要问题之一,通常利用折减因子来量化筒壳结构的缺陷敏感性程度。然而现有缺陷敏感性分析方法大多以预测筒壳折减因子下限为目的,未考虑不同形位公差水平对筒壳折减因子的影响。针对此问题,本文提出了一种考虑形位公差的薄壁筒壳折减因子预测方法。该方法基于多点最不利扰动载荷法进行最不利缺陷搜索,获得筒壳不同形位公差下的折减因子下限值,从而确定考虑形位公差的薄壁筒壳折减因子参考值,并利用不完全折减刚度法对计算过程进行加速。算例结果表明本文提出的筒壳折减因子预测方法可在保证安全可靠的前提下,有效提高折减因子预测精度,消除筒壳结构设计过程中不必要的安全裕度,对结构减重有积极意义。未来可基于本方法展开我国新一代航天结构薄壁筒壳折减因子设计规范的研究工作,进一步提高我国航天筒壳结构设计的精细化和轻量化水平。  相似文献   

9.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

10.
This paper presents an analytical approach to investigate the non-linear axisymmetric response of functionally graded shallow spherical shells subjected to uniform external pressure incorporating the effects of temperature. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for shallow spherical shells are derived by using the classical shell theory and specialized for axisymmetric deformation with both geometrical non-linearity and initial geometrical imperfection are taken into consideration. One-term deflection mode is assumed and explicit expressions of buckling loads and load-deflection curves are determined due to Galerkin method. Stability analysis for a clamped spherical shell shows the effects of material and geometric parameters, edge restraint and temperature conditions, and imperfection on the behavior of the shells.  相似文献   

11.
The dynamic elastic buckling behavior of a geometrically imperfect complete spherical shell that is subjected to a uniform external step pressure is examined using Sander's equilibrium and kinematic equations, appropriately modified to include the influence of inertia forces and initial stress-free imperfections in the radius. A finite-difference procedure with either the Houbolt or Park methods of time integration is used to predict the axisym-metric dynamic elastic buckling pressures and associated critical mode numbers. The dynamic buckling pressure is significantly smaller than the corresponding static value for small initial imperfections, but is less imperfection  相似文献   

12.
本文综述了圆筒壳稳定性中初始几何缺陷的几个重要问题。讨论了初始几何缺陷对圆筒壳临界载荷的基本效应,它的随机性、测量以及相应的数据库的建立。最后介绍了失稳破坏占主要地位的壳体结构的交互设计的基本思想和方法,并对进一步的研究工作提出了看法。   相似文献   

13.
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.  相似文献   

14.
Stability of imperfect elastic cylindrical shells which are subjected to uniform axial compression is analyzed by using the finite element method. Multiple interacting localized axisymmetric initial geometric imperfections, having either triangular or wavelet shapes, were considered. The effect of a single localized geometric imperfection was analyzed in order to assess the most adverse configuration in terms of shell aspect ratios. Then two or three geometric imperfections of a given shape and which were uniformly distributed along the shell length were introduced to quantify their global effect on the shell buckling strength. It was shown that with two or three interacting geometric imperfections further reduction of the buckling load is obtained. In the ranges of parameters that were investigated, the imperfection wavelength was found to be the major factor influencing shell stability; it is followed by the imperfection amplitude, then by the interval distance separating the localized imperfections. In a wide range of parameters this last factor was recognized to have almost no effect on buckling stresses.  相似文献   

15.
Buckling analysis of cylindrical shells with random geometric imperfections   总被引:2,自引:0,他引:2  
In this paper the effect of random geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under deterministic axial compression is presented. Therefore, a concept for the numerical prediction of the large scatter in the limit load observed in experiments using direct Monte Carlo simulation technique in context with the Finite Element method is introduced. Geometric imperfections are modeled as a two dimensional, Gaussian stochastic process with prescribed second moment characteristics based on a data bank of measured imperfections. (The initial imperfection data bank at the Delft University of Technology, Part 1. Technical Report LR-290, Department of Aerospace Engineering, Delft University of Technology). In order to generate realizations of geometric imperfections, the estimated covariance kernel is decomposed into an orthogonal series in terms of eigenfunctions with corresponding uncorrelated Gaussian random variables, known as the Karhunen-Loéve expansion. For the determination of the limit load a geometrically non-linear static analysis is carried out using the general purpose code STAGS (STructural Analysis of General Shells, user manual, LMSC P032594, version 3.0, Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA). As a result of the direct Monte Carlo simulation, second moment characteristics of the limit load are presented. The numerically predicted statistics of the limit load coincide reasonably well with the actual observations, particularly in view of the limited data available, which is reflected in the statistical estimators.  相似文献   

16.
压电板壳自由振动的三维精确分析   总被引:12,自引:0,他引:12  
本文简要评述了压电材料板壳结构的研究现状,着重介绍了近年来我们在压电板壳三维分析方面所做的工作:(1)四边简支横观各向同性压电矩形板的状态空间分析方法:(2)横观各向同性压电圆板和环板的状态空间分析方法;(3)横观各向同性压电圆柱壳和球面各向同性压电球壳耦合振动的精确分析。这些工作都直接从压电弹性力学三维基本方程出发,不引进任何变形假设,因此可作为二维简化理论和数值计算方法的校核标准。文末对今后压电材料板壳的研究方向也作了展望。  相似文献   

17.
For the design of spherical shells under external pressure relatively few information can be found in corresponding codes and recommendations, e.g. not at all in the new draft of Eurocode 3 ENV 1993-1-6. Under this aspect, new design rules for these shells were developed, which take into account relevant details like boundary conditions, material properties, and imperfections. They are usually based on a large number of systematic numerical simulations to obtain results describing the load carrying behaviour and imperfection sensitivity of thin spherical shells. In addition, previous theoretical and experimental results are discussed. Based on the results, diagrams and design rules have been developed which might be used for new recommendations in the design concept of the Eurocode.  相似文献   

18.
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the non-linear responses and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.  相似文献   

19.
20.
宋广凯  孙博华 《力学学报》2021,53(2):448-466
柱壳结构广泛应用于各个领域, 但由于其对初始缺陷较为敏感, 容易发生灾难性的屈曲失稳. 本文利用非线性有限元分析程序ABAQUS研究了柱壳屈曲问题, 并应用到了易拉罐的屈曲分析. 首先采用数值模拟的方法验证了Virot等学者的易拉罐屈曲试验结果, 然后为了获得屈曲的一些普适结果, 进一步考察了柱壳的屈曲表现. 对柱壳结构在不同载荷组合、不同几何参数作用下进行了细致分析. 为了讨论的直观, 本文绘制了柱壳结构在受到侧压-轴压载荷作用下外力-屈曲载荷-位移三维屈曲地貌图(称为landscape). 结果表明: 在侧压-轴压-扭转载荷作用下, 试件力-位移曲线出现了"cliff"(断崖)现象; 扭转载荷的施加不利于试件整体稳定性, 并造成了试件对初始缺陷的敏感性; 对于受到轴压-扭转载荷作用的试件, 本文定义承载力为零的平面为"sea level"(海平面)来区分试件破坏模式; 通过对不同边界条件的试件进行分析, 发现试件两端固定可以有效地增加结构的承载能力, 提高稳定性. 对柱壳结构内部充气可以大幅度提升结构的承载能力和稳定性, 减小对初始缺陷的敏感度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号