首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, the electronic structure and disorder effects in copper halides alloys are studied by means of the full potential linearized augmented plane wave (FLAPW) method. The calculated bowing parameter shows that the main contribution is due to the relaxation effects, though the charge transfer remains relatively significant, while the volume deformation contribution is negligible. The total bowing is found to be small in the three studied alloys. Results agree well with experimental and available theoretical works.  相似文献   

2.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

3.
4.
Physics of the Solid State - The processes of electric charge transfer (conductivity) and mass transfer (diffusion) in La1 ‒ ySryF3 – y superionic...  相似文献   

5.
The interaction of atomic H with Ag(1 1 1)/Si(1 1 1)7 × 7 surfaces was studied by thermal desorption (TD) spectroscopy and scanning tunneling microscopy (STM) at room temperature. TD spectroscopy revealed an intense peak from mono H–Si bonds, even though the Si surface was covered by the Ag atoms. This peak was not observed from Ag-coated SiO2/Si substrates. STM observation showed no clear change of the Ag surface morphology resulting from H exposure. All these results indicate that the atomic H adsorbs at neither the Ag surfaces nor Ag bulk sites, but at the Ag/Si interface by diffusing through the Ag film.  相似文献   

6.
The adsorption of coronene (C24H12) on the Si(1 1 1)-(7 × 7) surface is studied using scanning tunneling microscopy (STM). Upon room temperature submonolayer deposition, we find that the coronene molecules preferentially adsorb on the unfaulted half of the 7 × 7 unit cell. Molecules adsorbed on different sites can be induced to move to the preferential sites by the action of the tip in repeated image scans. Imaging of the molecules is strongly bias dependent, and also critically depends on the adsorption site. We analyze the results in terms of differential bonding strength for the different adsorption sites and we identify those substrate atoms which participate in the bonding with the molecule.  相似文献   

7.
Co-doping B-site of perovskite oxide LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCFO) with Cr6+ and Mg2+ ions has been attempted in this research for revamping chemical stability and oxygen ionic conductivity of this mixed conducting oxide. It is known that partial substitution for B-site cations of LSCFO by Cr gives rise to a significant improvement on chemical and thermal stability of the perovskite oxide. On the basis of this doped structure, introduction of an immaterial dose of Mg2+ ion into its B-site results in a microstructure consisting of smaller grains with higher density than its precursor. Furthermore, the resulting perovskite oxide La0.19Sr0.8Fe0.69Co0.1Cr0.2 Mg0.01O3 ? δ (LSFCCMO) displays higher O2? conductivity than the solely Cr-doped LSCFO besides the improved chemical stability against reduction in 5% CH4/He stream at 850 °C. A detailed examination of the oxidation states of B-site transition metal ions by XPS has also been conducted as a part of structural characterizations of LSFCCMO. The assessment of relative O2? conductivity shows that the grain boundary area plays a more important role than the bulk phase in facilitating ion transport, but with comparable boundary areas the higher densification level is favorable.  相似文献   

8.
9.
Physics of the Solid State - The ionic (proton and deuteron) conductivity of the system CaZr1 – xScxO3 – α (x = 0.03–0.20) is studied...  相似文献   

10.
The europium dopant concentration in strontium cerate was studied to achieve maximum hydrogen permeation. In order to determine high ambipolar conductivity, total conductivity and open circuit potential measurements were performed. Among the three different compositions of Eu-doped SrCe1 ? xEuxO3 ? δ (x = 0.1, 0.15 and 0.2) studied, SrCe0.9Eu0.1O3 ? δ showed highest total conductivity between 600 °C and 900 °C. However, transference number measurements showed increasing electronic conductivity with increasing dopant concentration and a stronger temperature dependence for electronic conduction. Therefore, the highest ambipolar conductivity was obtained over the compositional range from SrCe0.85Eu0.15O3 ? δ to SrCe0.8Eu0.2O3 ? δ depending on temperature. Finally, the hydrogen permeation flux was calculated based on the ambipolar conductivity and compared with experimental results.  相似文献   

11.
The adsorption of methanol, formaldehyde, methoxy, carbon monoxide and water on a (2 × 1) PdZn surface alloy on Pd(1 1 1) has been studied using DFT calculations. The most stable adsorption structures of all species have been investigated with respect to the structure and the electronic properties. It was found that methanol is only weakly bound to the surface. The adsorption energy only increases with higher methanol coverage, where chain structures with hydrogen bonds between the methanol molecules are formed. The highest adsorption energy was found for the formate species followed by the methoxy species. The formaldehyde species shows quite some electronic interaction with the surface, however the stable η2 formaldehyde has only an adsorption energy of about 0.49 eV. The calculated IR spectra of the different species fit quite well to the experimental values available in the literature.  相似文献   

12.
Trimetallic perovskite oxides, Sm(1 ? x)CexFeO3 ± λ (x = 0–0.05), were prepared by thermal decomposition of amorphous citrate precursors followed by calcinations. The material properties of the substituted perovskites were characterized by X-ray diffraction (XRD), X-ray florescence spectroscopy (XRF), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The doped materials exhibited a single perovskite phase in air up to 1350 °C and have specific surface areas in the range of 2.696–8.665 m2/g. In reducing atmosphere (5%v/vH2/N2), the unsubstituted perovskite (x = 0) decomposed into two phases while the ceria stabilized materials (x = 0.01, x = 0.03, x = 0.05) remained in a single phase as revealed by XRD analysis. Their conductivities were measured by the four point probe method in air and in dilute hydrogen (5%v/vH2/N2) separately. The ceria substituted materials show increased stability versus reduction and phase separation for a wide temperature range (up to 1000 °C). Although undoped SmFeO3 has higher conductivity under oxidizing conditions than ceria doped SmFeO3 due its p-type nature, the situation is reversed under reducing conditions. The ceria substituted perovskites (Sm(1 ? x)CexFeO3 ± λ, x = 0–0.05) showed higher conductivity in reducing than in oxidizing conditions, suggesting that ceria doping at the A-site has changed the SmFeO3 from p-type to n-type semi-conducting behavior.  相似文献   

13.
《Solid State Ionics》2009,180(40):1702-1709
Nanopowders of Ca1  xEuxMnO3 (0.1  x  0.4) manganites were synthesized as a single phase using the auto gel-combustion method. The citrate method shows to be simple and appropriate to obtain single phases avoiding segregation or contamination. The Ca1  xEuxMnO3 system has been synthesized at 800 °C during 18 h, against the conventional method of mixing oxides used to obtain these materials at higher temperatures of synthesis. The formation reaction was monitored by X-ray diffraction (XRD) analysis and an infrared absorption technique (FTIR). The polycrystalline powders are characterised by nanometric particle size, ∼ 48 nm as determined from X-ray line broadening analysis using the Scherrer equation. Morphological analysis of the powders, using the scanning electron microscope (SEM), revealed that all phases are homogeneous and the europium-substituted samples exhibit a significant decrease in the grain size when compared with the undoped samples. The structure refinement by using the Rietveld method indicates that the partial calcium substitution by europium (for x  0.3) modifies the orthorhombic structure of the CaMnO3 perovskite towards a monoclinic phase. All manganites show two active IR vibrational modes around 400 and 600 cm 1. The high temperature dependence of electrical resistivity (between 25 and 600 °C) allows us to conclude that all the samples exhibit a semiconductor behaviour and the europium causes a decrease in the electrical resistivity by more than one order of magnitude. The results can be well attributed to the Mn4+/Mn3+ ratio.  相似文献   

14.
We report on an interface-stabilized strained c(4 × 2) phase formed by cobalt oxide on Pd(1 0 0). The structural details and electronic properties of this oxide monolayer are elucidated by combination of scanning tunneling microscopy data, high resolution electron energy loss spectroscopy measurements and density functional theory. The c(4 × 2) periodicity is shown to arise from a rhombic array of Co vacancies, which form in a pseudomorphic CoO(1 0 0) monolayer to partially compensate for the compressive strain associated with the large lattice mismatch (~9.5%) between cobalt monoxide and the substrate. Deviation from the perfect 1:1 stoichiometry thus appears to offer a common and stable mechanism for strain release in Pd(1 0 0) supported monolayers of transition metal rocksalt monoxides of the first transition series, as very similar metal-deficient c(4 × 2) structures have been previously found for nickel and manganese oxides on the same substrate.  相似文献   

15.
(1 ? x) K0.5Na0.5NbO3 ? xLiNbO3 (where x = 0.0, 5.0, 5.5, 6.0, and 6.5 wt.%) (KNLN) perovskite structured ferroelectric ceramics were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that single phase was formed for pure KNN while a small amount of second phase (K6Li4Nb10O30, ~3%) was present in LN doped KNN ceramics. Phase analysis indicated the change in the crystal structure from orthorhombic to tetragonal with increase in LN content. The electrical behavior of the ceramics was studied by impedance spectroscopy technique in the high temperature range. Impedance analysis was performed using an equivalent circuit model. The impedance response in pure KNN and KNLN ceramics could be deconvoluted into two contributions, associated with the bulk (grains) and the grain boundaries. Activation energies for conductivity were found to be strongly frequency dependent. The activation energy obtained from dielectric relaxation data was attributed to oxygen vacancies. From PFM we found that the composition with 6.5 wt.% LN displays stronger piezocontrast as compared to pure KNN implying an evidence of a pronounced piezoelectric coefficient.  相似文献   

16.
This paper reports the visible luminescence properties of 1D2 state of Tm3 + -doped lead borate titanate aluminumfluoride (LBTAFTm) glasses. The absorption and luminescence was analyzed within the frame work of Judd-Ofelt model. The reliability of J-O intensity parameters obtained from the experimental oscillator strengths have satisfactorily been correlated with the calculated oscillator strengths with small r.m.s deviation of ± 0.12 × 10-6 by the least square fit analysis. Upon 359 nm excitation, the luminescence spectra show only one emission band at 458 nm (blue) corresponding to the 1D2  3 F4 transition in the spectral region 400–500 nm. No luminescence quenching has been observed with the increase of Tm3 + concentration. The decay profiles of the 1D2 level have shown single-exponential nature for all the concentrations and the decay times were found to decrease with the increase of concentration. The stimulated emission cross-section (σe) for the observed emission transition has also been computed. The large quantum efficiency (η) of the 1D2 level suggests the utility of LBTAFTm glass as a potential host for optical device applications at 458 nm emission wavelength.  相似文献   

17.
《Surface science》2003,470(1-2):L840-L846
Chemisorption of a family of six chloroethylenes (C2H3Cl, 1,1-C2H2Cl2, cis-1,2-C2H2Cl2, trans-1,2-C2H2Cl2, C2HCl3, and C2Cl4) on Si(1 1 1)7 × 7 at room temperature (RT) has been investigated by vibrational electron energy loss spectroscopy (EELS). The characteristic vibrational EELS features have been used to identify the prominent surface species upon RT adsorption. Like ethylene, C2H3Cl has been found to predominantly adsorb in a di-σ bonding geometry to the Si surface, while 1,1-C2H2Cl2, cis- and trans-1,2-C2H2Cl2, C2HCl3 and, to a lesser extent, C2Cl4 appear to undergo dechlorination upon adsorption to form chlorinated vinyl adspecies involving single-σ bonding structures. Evidence of vinylidene (>CCH2) has been obtained for the first time on a semiconductor surface for the adsorption of 1,1-C2H2Cl2. The present work illustrates that the molecular structure and the Cl content of chloroethylenes play a crucial role in controlling not only the adsorption geometry but also the extent of dechlorination and the resulting adspecies upon RT adsorption on Si(1 1 1).  相似文献   

18.
19.
A combination of infrared spectroscopy, X-ray photoelectron spectroscopy and density functional theory has been used to investigate the adsorption behavior of glycine at the Ge(100) ? 2 × 1 surface under ultrahigh vacuum conditions. Comparison of experimental and simulated IR spectra indicates that at 310 K, glycine adsorbs on Ge(100) ? 2 × 1 via O–H dissociation, with some fraction of the products also forming an N dative bond to a neighboring germanium atom. O–Ge dative bonding is not observed. As coverage increases, the surface concentration of the monodentate O–H dissociated adduct increases, while that of the N dative-bonded species appears constant. XPS data support and clarify the IR findings and reveal new insights, including the presence at higher coverage of a minor product that has undergone dual O–H and N–H dissociation. These findings are supported by the calculated energy diagrams, which indicate that the reaction of a glycine molecule on the Ge(100) ? 2 × 1 surface via O–H dissociation and interdimer N dative bonding is both kinetically and thermodynamically favorable and that N–H dissociation of this adduct is feasible at room temperature given incomplete thermal accommodation along the reaction pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号