首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The dynamic solution of a multilayered orthotropic piezoelectric infinite hollow cylinder in the state of axisymmetric plane strain is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and the other is dynamic. The quasi-static part is derived by the state space method, and the dynamic part is obtained by the separation of variables method coupled with the initial parameter method as well as the orthogonal expansion technique. By using the obtained quasi-static and dynamic parts and the electric boundary conditions as well as the electric continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived, which can be solved successfully by means of the interpolation method. The displacements, stresses and electric potentials are finally obtained. The present method is suitable for a multilayered orthotropic piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric dynamic loads. Numerical results are finally presented and discussed.  相似文献   

4.
By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic dynamic problem of hollow cylinder is transferred to an integral equation about a function with respect to time, which can be solved successfully by means of the interpolation method. Then the solution of the displacements, stresses, electric displacements and electric potentials are finally obtained. The present method is suitable for the hollow cylinder with arbitrary thickness subjected to arbitrary mechanical and electrical loads. Numerical results are also presented.  相似文献   

5.
The meshless local Petrov-Galerkin (MLPG) method is used to analyze transient dynamic problems in 3D axisymmetric piezoelectric solids with continuously inhomogeneous material properties. Both mechanical and thermal loads are considered here. A 3D axisymmetric body is created by rotation of a cross section around an axis of symmetry. Axial symmetry of geometry and boundary conditions reduces the original 3D boundary value problem into a 2D problem. The cross section is covered by small circular sub-domains surrounding nodes randomly spread over the analyzed domain. A unit step function is chosen as test function, in order to derive local integral equations on the boundaries of the chosen sub-domains, called local boundary integral equations (LBIE). These integral formulations are either based on the Laplace transform technique or the time-difference approach. The local integral equations are non-singular and take a very simple form, despite of inhomogeneous and anisotropic material behaviour across the analyzed structure. Spatial variation of all physical fields (or of their Laplace transforms) at discrete time instants are approximated on the local boundary and in the interior of the sub-domain by means of the moving least-squares (MLS) method. The Stehfest algorithm is applied for the numerical Laplace inversion, in order to retrieve the time-dependent solutions.  相似文献   

6.
I.IntroductionPiezoelectricmedia,asa"ex\'typeoffullctionalmaterial.arex'idel}'appliedtomanytechnologicalfieldsduetoitselectronlechallicalcouplillgeffect.Defects.likethatofothermaterials.arenotlimitedtocracks.x'oidsandinclusionsillpiezoelectricmaterialsorelements.Yet,stressconcentrationsornoll-ullitbrllldistl-ibutionsofelectricfieldillducedbythosedefectsareoneofthehe}l'filctorswllicllwouldleadpiezoelectricstructurestonon-normalfailure.Therel'ore.itisofgrealimportancetostudythepropertiesofthos…  相似文献   

7.
8.
The calculation of the vector representation of resonators in the coupling and loss eigenstate spaces is presented. The coupling and loss eigenstates are located in a Cartesian coordinate system, together with the vector representation of resonators. The convenience of this representation is illustrated by calculations of the coupling factor and the loss factor in an octant of space in which resonators are positioned.  相似文献   

9.
AGENERALSOLUTIONANDTHEAPPLICATIONOFSPACEAXISYMMETRICPROBLEMINPIEZOELECTRICMATERIALWangZi-kung(王子昆)ChenGeng-chao(陈庚超)(XianJiao...  相似文献   

10.
含椭圆形刚性夹杂的压电材料平面问题   总被引:1,自引:0,他引:1  
应用复变函数的Faber级数展开方法,本文研究了含椭圆形刚性夹杂的压电材料平面问题,给出了问题的封闭解。解签表明,夹杂内的电场强度和电位移为常量。并通过算例分析,讨论了正,逆压电效应在基体孔周处的机电行为。  相似文献   

11.
Summary In this paper we deal with the formulation of the axisymmetric boundary integral equation for the transversely isotropic elastic body. We assume that the axis of elastic symmetry is coincident with the axis of rotation and that the elastic body is subjected to arbitrary axisymmetric loading without torsion. Numerical calculations are carried out and compared with results by the finite element method.
Zur Beschreibung von axialsymmetrischen, elastisch transversal-isotropen Problemen durch Randintegralgleichungen
Übersicht Behandelt wird die Formulierung der Randintegralgleichung für den axialsymmetrischen, elastisch transversal-isotropen Körper. Es wird angenommen, daß die Achse der elastischen Symmetrie mit der Rotationsachse zusammenfällt und der Körper einer beliebigen axialsymmetrischen Belastung ohne Torsion unterworfen ist. Ausgeführte numerische Beispiele werden mit Ergebnissen der Finite-Element-Methode verglichen.
  相似文献   

12.
13.
This paper proves Love’s stress function of space axisymmetric problem can be represented by choosing two generalized analytic functions of complex variates reasonably[1], and deduces the expressions of the components of stress displacements and boundary conditions in complex function. To present the feasibility of the method here and examining the truth of the formulae founded in this paper, the problem of circular shaft with globular cavity pressed on the side and pulled at the ends is solved by using power series and the result is the same as that solved by other methods. In the end, the problem of a cone sheared by uniform shear stress on the sideface is solved, and the solution of a cone acted on by gravity is given by converting constant body forces into surface forces.  相似文献   

14.
A new nondestructive method for analyzing axisymmetric problems is presented. The method uses the integrated optical effects through the whole transverse section of the body, along with the strain-displacement and equilibrium equations to give the separate internal stresses on that section. The method is reasonably general and may be applied to thermoelastic and residual stress problems. Some experimental results are presented and discussed.  相似文献   

15.
16.
The problem of an elliptical crack embedded in an unbounded transversely isotropic piezoelectric media with the crack-plane parallel to the plane of isotropy of the media and subjected to remote normal mechanical as well as electric loading is considered first. The problem has been successfully reduced to a pair of coupled integral equations that are suitable for the application of an integral equation method developed earlier for three-dimensional problems of LEFM. Solution to the mechanical displacement and electric potentials are obtained for prescribed uniform loadings and expressions for corresponding intensity factors and crack opening displacement are deduced. The above method has further been applied to solve the problem of a rigid flat-ended elliptical punch indenting a transversely isotropic piezoelectric half-space surface with the plane of isotropy parallel to the surface. Solutions to mechanical stress and electric displacement are obtained for prescribed constant normal displacement and constant electric potential interior to the elliptical region and expression for the total force required to maintain a prescribed indentation is deduced.  相似文献   

17.
18.
19.
In this paper, we study the propagation of shear waves in a magnetoelastic self-reinforced medium using finite difference technique. Dispersion equation has been deduced for the case when (n ? 1) layers lie over a half space. It is observed that the obtained dispersion equation is in assertion with the classical Love wave equation for both the cases when a single and double layer lies over a half space. The stability condition for the used finite difference scheme and the expression for the phase and group velocity have been derived. The dispersion curve for different values of magnetoelastic coupling parameter, phase and group velocity variation for different values of stability ratio has been depicted by means of graphs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号