首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability of underpotentially deposited (upd) Ag layers on Au(1 1 1) surface was investigated by surface X-ray scattering (SXS). While the complete pseudomorphic Ag bilayer on Au(1 1 1) surface obtained by upd at 10 mV (vs. Ag/Ag+) was maintained its structure even after the circuit was disconnected and the surface was exposed to ambient atmosphere, the pseudomorphic Ag monolayer obtained by upd at 50 mV was converted to a partial bilayer with the coverage of 0.66 and 0.46 ML for the 1st and 2nd layer, respectively. These results show that Ag bilayer is structurally more stable than Ag monolayer on Au(1 1 1) and Ag atoms of the upd monolayer move around on the Au(1 1 1) surface without potential control.  相似文献   

2.
Size and lattice constant of thiol self-assembled monolayer (SAM)-modified gold nanoclusters (GNCs) assembled on Au(111) surfaces after each electrochemical treatment were investigated using grazing incidence x-ray diffraction (GIXRD). When the potential was swept between 0 and 1.3 V (vs. Ag/AgCl), the size and lattice constant of GNCs slightly decreased due to the oxidative desorption of the SAMs. As the number of potential cycles increased, the size of GNCs started to increase due to the aggregation, while the lattice constant continued to decrease due to further desorption of the SAMs from the GNCs. After most of the SAMs were removed from the GNCs, the size and lattice constant monotonically increased with the number of potential cycles. The size dependent lattice constant change was observed when GNCs were smaller than ~ 35 Å.  相似文献   

3.
Rhodium adlayers (submonolayer range) have been prepared on Pt(1 0 0) electrodes by electrodeposition from acidic solutions containing an excess of chloride. These Rh/Pt(1 0 0) electrodes give a well-defined voltammetric signal in the hydrogen adsorption region, which gives evidence of a high level of order in the Rh adlayer and allow a reliable estimation of the coverage. The voltammetric behavior of the Rh/Pt(1 0 0) electrodes points to an epitaxial growth with formation of rhodium islands. The well-ordered bimetallic surfaces freshly prepared were tested as electrocatalysts for nitrous oxide reduction and the responses were compared with those of the bulk Pt(1 0 0) and Rh(1 0 0) electrodes. The voltammogram for the bimetallic surface showed well separated N2O reduction signals for Rh and Pt surface zones. An exceptionally high electrocatalytic activity for the Rh adlayer was found for low coverages. This behavior is explained on the basis of a high activity of the rhodium adatoms in the periphery of the islands.  相似文献   

4.
A highly catalytic system for sugar oxidation in alkaline media is presented, for the first time, in which glucose oxidation takes place at ca. −0.44 V (vs. Ag|AgCl). Modification of Au(1 1 1) single crystal surface by under potential deposition (UPD) was carried out for a variety of metals and catalytic effect for sugar oxidation has been studied in 0.1 M NaOH. UPD of Ag ad-atoms on Au electrodes were of the best catalytic activity compared to other metals (Cu, Co, Ru, Cd, Ir, and Pt, etc.). For aldose type monosaccharide studied (glucose, mannose and xylose) as well as for aldose-containing disaccharides (maltose and lactose), one significant oxidation peak was obtained, however, no significant oxidation current was observed for disaccharides like sucrose. Gluconolactone and mannolactone gave no oxidation current at negative potentials at which glucose was oxidized, indicating no more than two-electron oxidation took place. With Ag ad-atoms coverage of ca. 0.3 monolayer leads to a positive catalytic effect expressed through a negative shift of ca. 0.14 V (glucose case) on the oxidation potential and a slight increase in peak current. At the Au(1 0 0) surface similar results to those at an Au(1 1 1) electrode were also observed.  相似文献   

5.
The tin adlayer formed by spontaneous deposition on Au(1 1 1) was characterized by cyclic voltammetry and in situ scanning tunneling microscopy (STM) in sulphuric acid solution. Cyclic voltammetry measurements showed oxidation peaks in the potential range −0.60  E/V vs SSE  0, which can be ascribed to the dissolution of the Sn adsorbed layer. STM images of the Au(1 1 1)/Sn modified surface showed that tin nucleated both on step edges and on the flat terraces forming two-dimensional islands. The anodic polarization of this modified surface produced the gradual dissolution of the Sn adlayer which was evidenced by the formation of some holes and the reduction of the initial terraces to many small islands. STM images with atomic resolution obtained on these islands displayed an hexagonal expanded atomic structure. After the anodic stripping of this Sn adsorbed layer the images exhibited the typical Au(1 1 1) terraces with a (1 × 1) atomic structure. However, at more anodic potentials another dissolution process was observed producing noticeable changes on the surface morphology which could be ascribed to the dissolution of a Au–Sn surface alloy.  相似文献   

6.
Borophene, a two-dimensional (2D) planar boron sheet, has attracted dramatic attention for its unique physical properties that are theoretically predicted to be different from those of bulk boron, such as polymorphism, superconductivity, Dirac fermions, mechanical flexibility and anisotropic metallicity. Nevertheless, it has long been difficult to obtain borophene experimentally due to its susceptibility to oxidation and the strong covalent bonds in bulk forms. With the development of growth technology in ultra-high vacuum (UHV), borophene has been successfully synthesized by molecular beam epitaxy (MBE) supported by substrates in recent years. Due to the intrinsic polymorphism of borophene, the choice of substrates in the synthesis of borophene is pivotal to the atomic structure of borophene. The different interactions and commensuration of borophene on various substrates can induce various allotropes of borophene with distinct atomic structures, which suggests a potential approach to explore and manipulate the structure of borophene and benefits the realization of novel physical and chemical properties in borophene due to the structure–property correspondence. In this review, we summarize the recent research progress in the synthesis of monolayer (ML) borophene on various substrates, including Ag(1 1 1), Ag(1 1 0), Ag(1 0 0), Cu(1 1 1), Cu(1 0 0), Au(1 1 1), Al(1 1 1) and Ir(1 1 1), in which the polymorphism of borophene is present. Moreover, we introduce the realization of bilayer (BL) borophene on Ag(1 1 1), Cu(1 1 1) and Ru(0 0 0 1) surfaces, which possess richer electronic properties, including better thermal stability and oxidation resistance. Then, the stabilization mechanism of polymorphic borophene on their substrates is discussed. In addition, experimental investigations on the unique physical properties of borophene are also introduced, including metallicity, topology, superconductivity, optical and mechanical properties. Finally, we present an outlook on the challenges and prospects for the synthesis and potential applications of borophene.  相似文献   

7.
Silver nanoparticle coated multi-walled carbon nanotubes (Ag/MWCNT) were prepared and used to fabricate a modified electrode. The Ag/MWCNT composites were observed by a transmission electron microscope (TEM), and the electrochemical properties of the Ag/MWCNT composite modified glassy carbon electrode were characterized by electrochemical measurements. The results showed that these composites had a favorable catalytic ability for the reduction of trichloroacetic acid (TCAA). Square wave voltammetric (SWV) technique was applied to detect TCAA. Under optimum conditions, the voltammetric determination of TCAA was performed with a linear range of 5.0 × 10? 6–1.2 × 10? 4 mol L? 1 and a detection limit of 1.9 × 10? 6 mol L? 1 (S/N = 3).  相似文献   

8.
Ag nanocubes that are 45 nm in size are synthesized and successfully used as catalysts in oxygen electroreduction. Electrochemical surface areas (ESAs) are considered to determine the effect on HO2 production, which is found to be in the following order: nanocubes < nanoparticles. Comparative data generated using Tafel analyses in 0.1 M NaOH electrolyte without and with methanol show that unchanged slopes on the prepared cubic catalysts can indicate high resistance of Ag nanocubes for methanol oxidation during oxygen reduction reaction. Among these Ag catalysts, nanocubes exhibit 9.29 × 10 2 mA cm 2 (at − 0.15 V vs. Ag/AgCl), the better activity in the oxygen reduction reaction.  相似文献   

9.
Triangular silver nanoplates exhibit excellent optical and catalytic properties in many fields, such as catalysts, sensors and bio-medicine. In this paper, triangular nanoplates were generated just in the presence of sodium citrate through a light-induced ripening process, which were converted from spherical silver nanoparticles by reducing silver nitrate with sodium borohydride. By using UV–Vis spectroscopy, particle size analyzer, transmission electron microscopy (TEM) and Ag+ concentration analysis, the effects of precursors during the preparation of triangular nanoplates were systematically investigated and the optimal experimental conditions were determined. Based on density functional theory (DFT), the adsorption energies of citrate ion, malate ion and tartronate ion on Ag (1 1 1), (1 1 0) and (1 0 0) were calculated. In addition, theoretical calculations coupled with experimental observations showed that citrate ion as capping agent could more preferentially bind to Ag (1 1 1) and thus blocked Ag (1 1 1) while only allowing extensive growth along the lateral direction. This well explains sodium citrate is an efficient agent in preparing triangular silver nanoplates.  相似文献   

10.
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (≤10 μg ml−1, for lysozyme ≤200 μg ml−1) and dependence of surface wettability, as well as adsorption kinetics and elutability of adsorbed films by buffer and sodium dodecyl sulphate (SDS) solutions were investigated. Results showed that the amounts adsorbed decreased in the order lactoferrin  lactoperoxidase > lysozyme  histatin 5. On hydrophilic silica, the adsorption was most likely driven by electrostatic interactions, which resulted in adsorbed amounts of lactoferrin that indicated the formation of a monolayer with both side-on and end-on adsorbed molecules. For lactoperoxidase the adsorbed amounts were somewhat higher than an end-on monolayer, lysozyme adsorption showed amounts corresponding to a side-on monolayer, and histatin 5 displayed adsorbed amounts in the range of a side-on monolayer. On hydrophobized substrata, the adsorption was also mediated by hydrophobic interactions, which resulted in lower adsorbed amounts of lactoferrin and lactoperoxidase; closer to side-on monolayer coverage. For both lysozyme and histatin 5 the adsorbed amounts were the same as on the hydrophilic silica. The investigated proteins exhibited fast adsorption kinetics, and the initial kinetics indicated mass transport controlled behaviour at low concentrations on both types of substrates. Buffer rinsing and SDS elution indicated that the proteins in general were more tightly bound to the hydrophobized surface compared to hydrophilic silica. Overall, the surface activity of the investigated proteins implicates their importance in the salivary film formation.  相似文献   

11.
Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 °C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3σ, 250 μl sample loop) measured under optimized conditions were: 1.4 μg l? 1 and 0.35 ng, respectively.The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by 111Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system.Presented study follows the hypothesis that the “volatile” Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40–45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40–45 nm size particles only.Transmission electron microscopy revealed particles of 8 ± 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.  相似文献   

12.
Oxygen reduction reaction (ORR) in alkaline medium at iron (II) tetrakis (diaquaplatinum) octacarboxyphthalocyanine (PtFeOCPc) catalyst supported on multi-walled carbon nanotubes (MWCNTs) has been described. The ORR followed the direct 4-electron transfer process, with a very low onset potential (approximately zero volts vs. Ag|AgCl, saturated KCl) and at a kinetic rate constant, 2.78 × 10? 2 cm s? 1. The results clearly showed that the ORR activity at the MWCNT-PtFeOCPc platform is comparable or even better than recent reports with other electrocatalysts, thus a promising catalytic platform for cathodic process in fuel cell device.  相似文献   

13.
Dealloyed PtAg/C nanostructures, prepared by selective electrochemical etching of Ag in 0.5 M H2SO4 from a series of alloyed PtmAg/C samples with atomic Pt/Ag ratio m = 0.1, 0.5, 1.0 and 1.5, were employed as cathode electrocatalysts for oxygen reduction reaction (ORR) in 0.5 M KOH. Compared with their as-prepared counterpart alloy catalysts, the dealloyed catalysts showed higher half-wave potentials (E1/2) and significantly higher Pt mass-specific activity (MSA) data. The intrinsic activity (IA) of Pt increased more or less after the dealloying treatment but was strongly dependent on the composition (m) of the alloyed sample. The Pt IA numbers were comparable for the dealloyed catalysts derived from PtmAg/C of m = 0.5, 1.0 and 1.5, which were nearly twice that for E-TEK Pt/C catalyst and 3 times that for the dealloyed catalyst derived from Pt0.1Ag/C.  相似文献   

14.
Xathine oxidase was chemically modified with β-cyclodextrin-branched carboxymethylcellulose and further supramolecularly immobilized on a gold electrode, previously coated with a monolayer of 1-adamantanyl residues. The electrode was employed for constructing an amperometric biosensor device, which showed linear response (poised at +700 mV vs. Ag/AgCl) toward xanthine concentration between 300 μM and 10.4 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 14 s and its sensitivity was 8.2 mA/M cm2. The enzyme electrode retained 93% of its initial activity after 3 weeks of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0. The supramolecular nature of the immobilization approach was confirmed by cyclic voltammetry.  相似文献   

15.
Electrochemistry/mass spectrometry (EC/MS) using two different types of electrolytic cells was employed for the systematic mechanistic study of colchicine's reduction, both in aqueous and non-aqueous media. In aqueous media, at around − 1 V vs. Ag/AgCl, colchicine suffers a single-electron reduction to a transient anion radical, which after a follow-up protonation leads to a neutral free radical (ErCi mechanism). Depending on the experimental conditions, the latter undergoes some dimerization. At more negative potentials (− 1.4 V vs. Ag/AgCl) and pH < 7, the free radical is undergoing another single-electron reduction and a subsequent protonation. In the absence of protons (aprotic media), the one-electron reduction gives the anion radical. This process becomes fully reversible at high scan rates (≥ 10 V/s).  相似文献   

16.
In this work, polyvinyl alcohol (PVA) protected silver grass-like nanostructure (PVA–Ag–GNS) with near infrared surface-enhanced Raman scattering (NIR-SERS) activity was prepared and employed to detect DNA and DNA bases. The PVA–Ag–GNS demonstrated high NIR-SERS activity and good optical reproducibility in the detection of adsorbates such as the case of crystal violet, DNA and DNA bases. By using of the tested molecule of thymine, the PVA–Ag–GNS shows a high enhancement factor (EF) of ∼108. For NIR-SERS detection of DNA molecules, Raman signals from the DNA bases of guanine (630 cm−1) and adenine (720 cm−1) are greatly enhanced. For DNA molecules NIR-SERS detection, Raman signals from the DNA bases of guanine (630 cm−1), adenine (720 cm−1) and cytosine (1010 cm−1) are greatly enhanced. The experimental results show that the NIR-SERS spectrum of DNA is dominated by guanine mode, which is followed by adenine and cytosine modes, respectively. Meanwhile, the NIR-SERS signal intensities of the DNA bases increase in the order of thymine (T) < cytosine (C) < adenine (A) < guanine (G). One can conclude that the adsorption strength of the DNA bases in DNA molecule with the silver surface is in the order T < C < A < G, which is different from that of the four DNA bases in individual molecule adsorbed on silver surface (T < A < G < C). On the other hand, the geometry optimization and calculated wavenumber of the complexes of adenine–Ag, guanine–Ag, cytosine–Ag and thymine–Ag for the ground states are performed with DFT, B3LYP functional and the LanL2DZ basis set. The calculated wavenumbers match well with the experimental results. According to our experiment and calculations, DNA base molecules adsorbed on silver surface via the intra-annular nitrogen atom which is adsorbed on the silver nanoparticle and formed metal–molecule complexes by the available lone pair.  相似文献   

17.
Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×104 S cm?1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.  相似文献   

18.
Size-controlled large scale synthesis of silver nanoparticles was performed using Ag(I)–S12 inorganic-organic hybrid polymer with supramolecular structures though electron beam irradiation. The Ag(I)–S12 polymer was simply prepared by mixing dodecanethiol with the solution of silver salts. The silver nanoparticles with various sizes were prepared from Ag(I)–S12 polymer with an electron beam voltage from 0.3 MeV to 2 MeV, current from 0.06 mA to 0.48 mA, and/or irradiation time from 1 to 10 min. The morphology and chemical composition of the irradiated samples were characterized by transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR).  相似文献   

19.
The evolution of electrochemical characteristics of a gold electrode upon the deposition of one and more atomic silver layers was studied by means of cyclic voltammetry and the method of potential temperature jump induced by the laser irradiation. Characteristics of the electric double layer on Ag monolayer are determined to be close to those of a massive silver electrode. Meanwhile, the electron-transfer parameters for the model redox system Fe(CN)63 −/4  correspond to a gold electrode. The silver beyond the first atomic layer in multilayer deposits was shown to transform into Ag hexacyanoferrate (II) due to the spontaneous chemical reaction with K3Fe(CN)6 from the solution. For the Fe(CN)63 −/4  redox system, the difference between oxidation and reduction peak potentials on a cyclic voltammogram increases with the growth of the silver layers number. This effect results from the corresponding increase in the ohmic resistance of the silver hexacyanoferrate (II) film and is not attributed to the changes in the electron-transfer kinetics.  相似文献   

20.
Direct electrochemical response of Myoglobin (Myb) at the basal plane graphite (BPG) electrode was observed when a room temperature ionic liquid (RTIL), 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate ([HEMIm][BF4]), was used as the supporting electrolyte. In a 0.17 M [HEMIm]BF4 aqueous solution, a couple of well-defined redox peaks of Myb could be obtained, whose anodic and cathodic peak potentials were at −0.158 and −0.224 V (vs. Ag/AgCl), respectively. Both anodic and cathodic peak currents increased linearly with the potential scan rate. Compared with the supporting electrolyte of phosphate buffer, [HEMIm][BF4] played an obvious promotion for the direct electron transfer between Myb and the BPG electrode. Further investigation suggested that Myb was adsorbed tightly on the surface of the BPG electrode in the presence of [HEMIm][BF4] to form a stable, approximate monolayer Myb film. Myb adsorbed on the BPG electrode surface showed a remarkable electrocatalytic activity for the reduction of oxygen in a [HEMIm][BF4] aqueous solution. Based on these, a third-generation biosensor could be constructed to directly detect the concentration of oxygen in aqueous solution with a limit of detection of 2.3 × 10−8 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号