首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report a pilot study in in situ electrochemical X-ray dynamic microscopy, based on a model system: the anodic and cathodic behaviour of Ag in neutral NaCl and (NH4)2SO4 aqueous solutions. In situ X-ray imaging highlighted mesoscopic features related to corrosion processes, yielding soluble (NH4+ solution) and insoluble (Cl solution) corrosion products, as well as cathodic growth morphologies. X-ray absorption and phase contrast images were collected, confirming the feasibility of soft X-ray microscopic measurements with lateral resolution down to a few tens of nm in electrochemical cells for operation in a high vacuum environment in presence of liquid electrolytes.  相似文献   

2.
In our recent work (Höche et al. 2016) we proposed that non-faradaic dissolution of Fe impurities and/or iron containing phases with subsequent re-deposition of thin film of pure (“in statu nascendi”) iron enlarges cathodically active sites at the surface of corroding magnesium. The effect drastically accelerates corrosion of impurity containing Mg. In the present work we assume that if Fe re-deposition is prevented, the area of cathodic sites can be drastically decreased and hence corrosion of Mg can be suppressed. In this proof of concept work we use strong Fe3 + complexing agents in order to remove dissolved iron cations from corrosion sites and prevent iron re-deposition. All used iron complexing agents efficiently lowered the corrosion rate of Mg. Direct correlation of complex stability with its inhibiting efficiency was established. It was shown that cyanide, salicylate, oxalate, methylsalicylate and thiocyanate efficiently reduce hydrogen evolution and suppress critical dark area formation.  相似文献   

3.
The direct seawater electrolysis at high current density and low overpotential affords an effective strategy toward clean and renewable hydrogen fuel production. However, the severe corrosion of anode as a result of the saturation of Cl upon continuous seawater feeding seriously hamper the electrolytic process. Herein, cobalt ferricyanide / cobalt phosphide (CoFePBA/Co2P) anodes with Cap/Pin structure are synthesized, which stably catalyze alkaline saturated saline water oxidation at 200–2000 mA cm−2 over hundreds of hours without corrosion. Together with the experimental findings, the molecular dynamics simulations reveal that PO43− and Fe(CN)63− generated by the electrode play synergistic role in repelling Cl via electrostatic repulsion and dense coverage, which reduced Cl adsorption by nearly 5-fold. The novel anionic synergy endow superior corrosion protection for the electrode, and is expected to promote the practical application of saline water electrolysis.  相似文献   

4.
Corrosion-induced delamination of an epoxy coating on the AISI/SAE 1045 carbon steel was studied under a humid atmospheric condition (temperature of 25 °C, one standard atmospheric pressure, and relative humidity of 90 %) by the technique of scanning Kelvin probe force microscopy (SKPFM). Surface-polished 1045 samples were first cold coated with the epoxy and then subject to the atmospheric corrosion under the humid atmospheric condition. At specified time intervals, surface Volta potential of the samples was measured using the SKPFM over the dry surface of epoxy coating. The map of Volta potentials demonstrated high contrasts among three characteristic zones: intact steel-epoxy interface, delaminated interface, and interface with active corrosion, which based on a rigorous calibration procedure were then linked to the actual corrosion potential of the steel (measured using a potentiostat w.r.t. a saturated calomel electrode). The SKPFM was found to be able to provide a mean of direct and nondestructive detection of early active corrosion and coating delamination of steels at a submicroscopic resolution, which outperformed the conventional electrochemical techniques for such purposes.  相似文献   

5.
WBE联合EIS技术研究缺陷涂层下金属腐蚀   总被引:2,自引:0,他引:2  
张伟  王佳  李玉楠  王伟 《物理化学学报》2010,26(11):2941-2950
用电化学阻抗谱(EIS)结合丝束电极(WBE)技术研究了缺陷涂层浸泡在3.5%(质量分数)NaCl溶液中的劣化过程.从浸泡开始到完好涂层鼓泡失效,缺陷涂层丝束电极阻抗响应一直是缺陷区电极腐蚀反应过程特征,而完好涂层的劣化过程和涂层下的腐蚀反应过程特征被"平均掉".根据电极表面的电流分布,结合阻抗谱技术实现了对表面任意局部阴极和阳极区阻抗测试.研究发现,浸泡开始时,缺陷涂层阴极电流和阳极电流均出现在缺陷区,随着腐蚀过程的发展,阳极电流仍然保持在缺陷区,但阴极电流逐渐向完好涂层下扩展.根据实验结果,对缺陷处和涂层下金属腐蚀反应发生发展的机理进行了深入讨论.  相似文献   

6.
Corrosion‐induced delamination of an epoxy coating on the AISI/SAE 1045 carbon steel was studied under a humid atmospheric condition (temperature of 25 °C, 1 standard atmospheric pressure, relative humidity of 90%) by the technique of scanning Kelvin probe force microscopy (SKPFM). Surface‐polished 1045 samples were first cold‐coated with the epoxy and then subject to the atmospheric corrosion under the specified condition. At predetermined time intervals, surface Volta potential differences of the samples were measured using the SKPFM over the dry surface of epoxy coating. The map of Volta potential differences demonstrated high contrasts among three characteristic zones: intact steel‐epoxy interface, delaminated interface, and interface with active corrosion, which was then linked to the actual corrosion potential of the steel (measured using a potentiostat with respect to a saturated calomel electrode) based on a rigorous calibration procedure. It was found that the SKPFM was able to provide direct and nondestructive detection of early active corrosion and coating delamination on steels at a submicroscopic resolution, which outperformed the conventional electrochemical techniques for the same purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
It is common and chemically intuitive to assign cations electrophilic and anions nucleophilic reactivity, respectively. Herein, we demonstrate a striking violation of this concept: The anion [B12Cl11] spontaneously binds to the noble gases (Ngs) xenon and krypton at room temperature in a reaction that is typical of “superelectrophilic” dications. [B12Cl11Ng] adducts, with Ng binding energies of 80 to 100 kJ mol−1, contain B−Ng bonds with a substantial degree of covalent interaction. The electrophilic nature of the [B12Cl11] anion is confirmed spectroscopically by the observation of a blue shift of the CO stretching mode in the IR spectrum of [B12Cl11CO] and theoretically by investigation of its electronic structure. The orientation of the electric field at the reactive site of [B12Cl11] results in an energy barrier for the approach of polar molecules and facilitates the formation of Ng adducts that are not detected with reactive cations such as [C6H5]+. This introduces the new chemical concept of “dipole-discriminating electrophilic anions.”  相似文献   

8.
The crystal structures of the title compounds, (S)‐1‐carboxy‐3‐(methyl­sulfanyl)­propanaminium chloride, C5H12NO2S+·Cl, and (S)‐1‐carboxy‐3‐(methyl­selanyl)­propanaminium chloride, C5H12NO2Se+·Cl, are isomorphous. The proton­ated l ‐methionine and l ‐seleno­methionine mol­ecules have almost identical conformations and create very similar contacts with the Cl anions in the crystal structures of both compounds. The amino acid cations and the Cl anions are linked viaN—H⋯Cl and O—H⋯Cl hydrogen bonds.  相似文献   

9.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

10.
Bis(5‐chloro‐8‐hydroxyquinolinium) tetrachloridopalladate(II), (C9H7ClNO)2[PdCl4], (I), catena‐poly[dimethylammonium [[dichloridopalladate(II)]‐μ‐chlorido]], {(C2H8N)[PdCl3]}n, (II), ethylenediammonium bis(5‐chloroquinolin‐8‐olate), C2H10N22+·2C9H5ClNO, (III), and 5‐chloro‐8‐hydroxyquinolinium chloride, C9H7ClNO+·Cl, (IV), were synthesized with the aim of preparing biologically active complexes of PdII and NiII with 5‐chloroquinolin‐8‐ol (ClQ). Compounds (I) and (II) contain PdII atoms which are coordinated in a square‐planar manner by four chloride ligands. In the structure of (I), there is an isolated [PdCl4]2− anion, while in the structure of (II) the anion consists of PdII atoms, lying on centres of inversion, bonded to a combination of two terminal and two bridging Cl ligands, lying on twofold rotation axes, forming an infinite [–μ2‐Cl–PdCl2–]n chain. The negative charges of these anions are balanced by two crystallographically independent protonated HClQ+ cations in (I) and by dimethylammonium cations in (II), with the N atoms lying on twofold rotation axes. The structure of (III) consists of ClQ anions, with the hydroxy groups deprotonated, and centrosymmetric ethylenediammonium cations. On the other hand, the structure of (IV) consists of a protonated HClQ+ cation with the positive charge balanced by a chloride anion. All four structures are stabilized by systems of hydrogen bonds which occur between the anions and cations. π–π interactions were observed between the HClQ+ cations in the structures of (I) and (IV).  相似文献   

11.
X‐ray diffraction analysis of single crystals of three new arsenates adopting apatite‐type structures yielded formula Sr5(AsO4)3F for strontium arsenate fluoride, (I), (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl for strontium barium arsenate chloride, (II), and Cd5(AsO4)3Cl0.58(OH)0.42 for cadmium arsenate hydroxide chloride, (III). All three structures are built up of isolated slightly distorted AsO4 tetrahedra that are bridged by Sr2+ in (I), by Sr2+/Ba2+ in (II) and by Cd2+ in (III). Compounds (I) and (II) represent typical fluorapatites and chlorapatites, respectively, with F at the 2a (0, 0, ) site and Cl at the 2b (0, 0, 0) site of P63/m. In contrast, in (III), due to the requirement that the smaller Cd2+ cation is positioned closer to the channel Cl anion (partially substituted by OH), the anion occupies the unusual 2a (0, 0, ) site. Therefore, Cl is similar to F in (I), coordinated by three A2 cations, unlike the octahedrally coordinated Cl in (II) and other ordinary chlorapatites. Furthermore, in (III), using FT–IR studies, we have inferred the existence of H+ outside the channel in oxyhydroxyapatites and provided possible atomic coordinates for a H atom in HAsO42−, leading to a proposed formulation of the compound as Cd5(AsO4)3−x(HAsO4)xCl0.58(OH)0.42−x−(y/2)Ox+(y/2)y/2.  相似文献   

12.
The crystal structures of 4-(phenyl­diazenyl)­naphthalen-1-amine, C16H13N3, (I), and its hydro­chloride, (4-amino­naph­thal­en-1-yl)­phenyl­diazenium chloride, C16H14­N3+·­Cl, (II), have been determined from X-ray single-crystal and powder data, respectively. The effect of the crystal environment on the molecular electronic structure was analysed on the AM1 level. One of the two symmetry-independent mol­ecules in (I) is involved in intermolecular hydrogen bonding, so that its dipole moment is twice as large as that of the other mol­ecule. The cations in (II) form stacks along [100], with the Cl anions forming hydrogen bonds to all three H atoms attached to N atoms.  相似文献   

13.
In the crystal structures of 2‐amino‐5‐chloropyridinium trichloroacetate, C5H6ClN2+·C2Cl3O2, (I), and 2‐methyl‐5‐nitroanilinium trichloroacetate monohydrate, C7H9N2O2+·C2Cl3O2·H2O, (II), the protonated planar 2‐amino‐5‐chloropyridinium [in (I)] and 2‐methyl‐5‐nitroanilinium [in (II)] cations interact with the oppositely charged trichloroacetate anions to form hydrogen‐bonded one‐dimensional chains in (I) and, together with water molecules, a three‐dimensional network in (II). The crystals of (I) exhibit nonlinear optical properties. The second harmonic generation efficiency in relation to potassium dihydrogen phosphate is 0.77. This work demonstrates the usefulness of trichloroacetic acid in crystal engineering for obtaining new materials for nonlinear optics.  相似文献   

14.
In the crystal structure of the title salt, C7H7Cl2N2O2+·Cl, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the mol­ecules through multiple N+—H⋯Cl salt bridges. There are two independent mol­ecules in the asymmetric unit, related by a pseudo‐inversion center. The direct inter­molecular coupling is established by C—H⋯O, C—H⋯Cl and C—Cl⋯Cl inter­actions. A rare three‐center (donor bifurcated) C—H⋯(O,O) hydrogen bond is observed between the methyl­ene and nitro groups, with a side‐on intra­molecular component of closed‐ring type and a head‐on inter­molecular component.  相似文献   

15.
A highly selective and durable oxygen evolution reaction (OER) electrocatalyst is the bottleneck for direct seawater splitting because of side reactions primarily caused by chloride ions (Cl). Most studies about OER catalysts in seawater focus on the repulsion of the Cl to reduce its negative effects. Herein, we demonstrate that the absorption of Cl on the specific site of a popular OER electrocatalyst, nickel-iron layered double hydroxide (NiFe LDH), does not have a significant negative impact; rather, it is beneficial for its activity and stability enhancement in natural seawater. A set of in situ characterization techniques reveals that the adsorption of Cl on the desired Fe site suppresses Fe leaching, and creates more OER-active Ni sites, improving the catalyst's long-term stability and activity simultaneously. Therefore, we achieve direct alkaline seawater electrolysis for the very first time on a commercial-scale alkaline electrolyser (AE, 120 cm2 electrode area) using the NiFe LDH anode. The new alkaline seawater electrolyser exhibits a reduction in electricity consumption by 20.7 % compared to the alkaline purified water-based AE using commercial Ni catalyst, achieving excellent durability for 100 h at 200 mA cm−2.  相似文献   

16.
In lamotrigine [systematic name: 6‐(2,3‐dichlorophenyl)‐1,2,4‐triazine‐3,5‐diamine], C9H7Cl2N5, (I), the asymmetric unit contains one lamotrigine base molecule. In lamotriginium chloride [systematic name: 3,5‐diamino‐6‐(2,3‐dichlorophenyl)‐1,2,4‐triazin‐2‐ium chloride], C9H8Cl2N5+·Cl, (II), the asymmetric unit contains one lamotriginium cation and one chloride anion, while in lamotriginium nitrate, C9H8Cl2N5+·NO3, (III), the asymmetric unit contains two crystallographically independent lamotriginium cations and two nitrate anions. In all three structures, N—H...N hydrogen bonds form an R22(8) dimer. In (I) and (II), hydrophilic layers are sandwiched between hydrophobic layers in the crystal packing. In all three structures, hydrogen bonds lead to the formation of a supramolecular hydrogen‐bonded network. The significance of this study lies in its illustration of the differences between the supramolecular aggregation in the lamotrigine base and in its chloride and nitrate salts.  相似文献   

17.
Metallothioneins (MTs) are widely used as biomarkers in environmental studies. However, eliminating interfering factors for MT determination in vivo by electrochemical detection is difficult. In this study, NO3 and Cl were found to negatively affect MT determination in Daphnia magna by square wave cathodic stripping voltammetry (SWCSV). The relevant mechanism was analyzed, and results were used to modify the original electrochemical testing parameters and environmental conditions. This modified SWCSV achieved accurate MT concentrations in D. magna, leading to detection limits as low as picomolar levels.  相似文献   

18.
2‐{1‐[(4‐Chloroanilino)methylidene]ethyl}pyridinium chloride methanol solvate, C13H13ClN3+·Cl·CH3OH, (I), crystallizes as discrete cations and anions, with one molecule of methanol as solvent in the asymmetric unit. The N—C—C—N torsion angle in the cation indicates a cis conformation. The cations are located parallel to the (02) plane and are connected through hydrogen bonds by a methanol solvent molecule and a chloride anion, forming zigzag chains in the direction of the b axis. The crystal structure of 2‐{1‐[(4‐fluoroanilino)methylidene]ethyl}pyridinium chloride, C13H13FN3+·Cl, (II), contains just one anion and one cation in the asymmetric unit but no solvent. In contrast with (I), the N—C—C—N torsion angle in the cation corresponds with a trans conformation. The cations are located parallel to the (100) plane and are connected by hydrogen bonds to the chloride anions, forming zigzag chains in the direction of the b axis. In addition, the crystal packing is stabilized by weak π–π interactions between the pyridinium and benzene rings. The crystal of (II) is a nonmerohedral monoclinic twin which emulates an orthorhombic diffraction pattern. Twinning occurs via a twofold rotation about the c axis and the fractional contribution of the minor twin component refined to 0.324 (3). 2‐{1‐[(4‐Fluoroanilino)methylidene]ethyl}pyridinium chloride methanol disolvate, C13H13FN3+·Cl·2CH3OH, (III), is a pseudopolymorph of (II). It crystallizes with two anions, two cations and four molecules of methanol in the asymmetric unit. Two symmetry‐equivalent cations are connected by hydrogen bonds to a chloride anion and a methanol solvent molecule, forming a centrosymmetric dimer. A further methanol molecule is hydrogen bonded to each chloride anion. These aggregates are connected by C—H...O contacts to form infinite chains. It is remarkable that the geometric structures of two compounds having two different formula units in their asymmetric units are essentially the same.  相似文献   

19.
The title compounds, C21H14Cl2NO2+·CF3O3S, (I), and C20H11Cl2NO2, (II), form triclinic crystals. Adjacent cations of (I) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Together with the CF3SO3 anions, the antiparallel‐oriented cations of (I) form layers in which the mol­ecules are linked via a network of C—H·O and π–π inter­actions (between the benzene rings). These layers, in turn, are linked via a network of multidirectional π–π inter­actions between the acridine rings, and the whole lattice is stabilized by electrostatic inter­actions between ions. Adjacent mol­ecules of (II) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Parallel‐oriented mol­ecules are arranged in chains stabilized via C—H·Cl inter­actions. These chains are oriented either parallel or antiparallel and are stabilized, in the latter case, via multidirectional π–π inter­actions and more generally via dispersive inter­actions. Acridine and independent benzene moieties lie parallel in the lattices of (I) and (II), and are mutually oriented at an angle of 33.4 (2)° in (I) and 9.3 (2)° in (II).  相似文献   

20.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号