首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed a density functional theory study to investigate the effect of carbon doping on Stone–Wales (SW) defective sites in the armchair (4, 4), (5, 5) and (6, 6) BNNTs, in order to remove structural instability induced by homonuclear N–N and B–B bonds. Two different orientations of SW defect are considered, parallel and diagonal, and then C atoms are doped at different positions of the defect sites. In general, it seems that among the considered arrangements, C atoms prefer to be substituted for the homonuclear B–B bond. The larger HOMO–LUMO band gaps for the most stable configurations indicate that C doping at B–B sites is kinetically more favorable than the other ones. According to calculated nuclear quadrupole resonance (NQR) parameters as a result of C-doping on SW defective sites, the quadrupole coupling constants (C Q ) of boron nuclei at defective sites decrease by about 0.508–1.406 MHz while 14N C Q of the defective sites, except for N8, increases. Interestingly, C Q of the N sites directly connected to dopant sites has maximum increment (0.612–2.596 MHz) while C Q of the N sites belonging to the B2N3 pentagon is undergone to some minor changes.  相似文献   

2.
Reaction of [η 5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 (1) with R1C≡CR1(R1 = Et, Ph) in toluene at 80°C yielded organoruthenium cyclobutadiene complexes [η 5:σ-Me2C(C5H4)(C2B10H10)]Ru(η 4-C4R 4 1 ) in >80% yield. Treatment of 1 with diynes R2C≡C(CH2)3C≡CR2 (R2 = Me, Et) in toluene at room temperature yielded ruthenacyclopentatrienes [η 5:σ-Me2C (C5H4)(C2B10H10)]Ru[=C2(R2)2C2(CH2)3] in >85% yield. These new complexes were fully characterized by various spectroscopic techniques, elemental analyses and single-crystal X-ray diffraction studies. The possible reaction mechanism was proposed.  相似文献   

3.
Treatment of [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(COD) (1) with phosphites, phosphines, amines or N-heterocyclic carbene in THF afforded the COD displacement complexes [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[P(OEt)3]2 (2), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[PPh2(OEt)]2 (3), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NH2CH2CH2Pri]2 (4), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)2 (5), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru (η2-NH2CH2CH2NH2) (6), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[η2-NH(CH3)CH2CH2NH(CH3)] (7) or [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NHC]2 (8, NHC = 1,3,4,5-tetramethylimidazol-2-yilidene), respectively. Ruthenium-amine complexes were much more labile than 1. Upon exposure to moisture, 5 was converted into [{η5:σ-Me2C(C5H4)(C2B10H10)}Ru(μ-H2O)]2 (9). Reactions of 5 with PR3 (R = PPh3, Cy), TMEDA (TMEDA = N,N,N′,N′-tetramethylethylenediamine) and CH3CN afforded the corresponding amine replacement products[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PPh3) (10), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PCy3) (11), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(TMEDA) (12) and [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 (13). These results indicated that the steric factor dominated these substitution reactions. The electrochemical studies showed that the electron richness of the Ru atom decreased in the order L2Ru(NHC)2 > L2Ru(amine)2 > L2Ru(NCMe)2 > L2Ru(P)2. All of these complexes were fully characterized by various spectroscopic techniques and elemental analyses. The molecular structures of 2, 3, 5-10, 12 and 13 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
The doping of graphene molecules by borazine (B3N3) units may modify the electronic properties favorably. Therefore, the influence of the substitution of the central benzene ring of hexa‐peri‐hexabenzocoronene (HBC, C42H18) by an isoelectronic B3N3 ring resulting in C36B3N3H18 (B3N3HBC) is investigated by computational methods. For comparison, the isoelectronic and isosteric all‐B/N molecule B21N21H18 (termed BN) and its carbon derivative C6B18N18H18 (C6BN), obtained by substitution of a central B3N3 by a C6 ring, are also studied. The substitution of C6 in the HBC molecule by a B3N3 unit results in a significant change of the computed IR vibrational spectrum between 1400 and 1600 cm?1 due to the polarity of the borazine core. The properties of the BN molecule resemble those of hexagonal boron nitride, and substitution of the central B3N3 ring by C6 changes the computed IR vibrational spectrum only slightly. The allowed transitions to excited states associated with large oscillator strengths shift to higher energy upon going from HBC to B3N3HBC, but to lower energy upon going from BN to C6BN. The possibility of synthesis of B3N3HBC from hexaphenylborazine (HPB) using the Scholl reaction (CuCl2/AlCl3 in CS2) is investigated. Rather than the desired B3N3HBC an insoluble and X‐ray amorphous polymer P is obtained. Its analysis by IR and 11B magic angle spinning NMR spectroscopy reveals the presence of borazine units. The changes in the 11B quadrupolar coupling constant CQ, asymmetry parameter η, and isotropic chemical shift δiso(11B) with respect to HPB are in agreement with a structural model that includes B3N3HBC‐derived monomeric units in polymer P. This indicates that both intra‐ and intermolecular cyclodehydrogenation reactions take place during the Scholl reaction of HPB.  相似文献   

5.
Time-of-Flight (TOF) neutron diffraction measurements have been carried out on aqueous 8 mol% sodium acetate solutions in D2O. Scattering cross sections that were observed for sample solutions involving 12C/13C and H/D isotopically substituted acetate ions were used to derive the first-order difference functions, ΔH(Q) and ΔC(Q), and corresponding distribution functions, G H(r;r) and G C(r;r), which describe the environmental structure around the methyl and the carboxyl groups within the acetate ion, respectively. Structural parameters concerning the first hydration shell of the carboxyl group within the acetate ion were obtained through the least squares fit to the observed intermolecular difference function, ΔC inter(Q). The nearest neighbor C O...D W1 (CO: carboxyl carbon atom, DW1: water deuterium atom) distance, r(C O...D W1 ), and the angle, ∠ C O ...D W1 -O W (O W : water oxygen atom), were determined to be 2.63(1) Å and 120(1)°, respectively. The coordination number, n(C O ...D W1 ), was obtained to be 4.0(1). These results are consistent with the hydration structure in which water molecules in the first hydration shell of the carboxyl group are hydrogen-bonded with oxygen atoms of the carboxyl group.  相似文献   

6.
The potential surface for the boron(III) oxide (B2O3) ground state has been calculated in restricted HF approximation with a minimal STO—3G basis set. The equilibrium geometry has C2v symmetry; the corresponding structural parameters are as follows: r(Oi—B1)= 1.241 Å; r(Bi—O)= 1.341 Å ; ∠B1QB2 = 142° and ǒO1B1O = 177°. Calculations were also carried out using the SCF-Xα approach for two configurations of B2O3 with C2v and D∞h symmetry.  相似文献   

7.
《Solid State Sciences》2007,9(8):699-705
Scandium transition metal carbides having the formula Sc3TC4 (T = Co, Ni, Ru, Rh, Os, Ir) have been structurally characterized by solid state 13C and 45Sc nuclear magnetic resonance spectroscopy. In all the compounds investigated, well-resolved signals are observed for crystallographically distinct carbon and scandium sites, confirming the formation of superstructures in the Rh and Ir compounds at ambient temperature. 45Sc NMR spectra are dominated by anisotropic broadening due to second-order quadrupolar perturbations. The nuclear electric quadrupolar coupling parameters (the coupling constant CQ and the asymmetry parameter η) are generally found in good agreement with values calculated theoretically from the crystal structure using the WIEN2k program. Furthermore, the spectra reveal large isotropic resonance shift differences between inequivalent Sc sites in a given compound and between sites of the same type for different compounds. Altogether the results illustrate that 45Sc NMR is a sensitive method for detecting isotropic and anisotropic local electron density variations in the Sc3TC4 family.  相似文献   

8.
The rational design of highly active hexagonal boron nitride (h-BN) catalysts at the atomic level is urgent for aerobic reactions. Herein, a doping impurity atom strategy is adopted to increase its catalytic activities. A series of doping systems involving O, C impurities and B, N antisites are constructed and their catalytic activities for molecular O2 have been studied by density functional theory (DFT) calculations. It is demonstrated that O2 is highly activated on ON and BN defects, and moderately activated on CB and CN defects, however, it is not stable on NB and OB defects. The subsequent application in oxidative desulfurization (ODS) reactions proves the ON and C-doped (CB, CN) systems to be good choice for sulfocompounds oxidization, especially for dibenzothiophene (DBT). While the BN antisite is not suitable for such aerobic reaction due to the extremely stable B−O*−B species formed during the oxidation process.  相似文献   

9.
A density functional study is performed to investigate the electronic and magnetic properties of zigzag and armchair BC2N nanotubes based on the 13C, 15N, and 11B NMR parameters and natural charge analysis. We considered three types of zigzag nanotubes, ZZ-1, ZZ-2, and ZZ-3 (n, 0) with n = 3, 4, and 5, as well as two types of armchair nanotubes: AC-1 and AC-2 (n, n) with n = 3 and 4. The obtained results indicate the divisions of the electrostatic environments around C nuclei into a few layers, consistent with the calculated natural charges on C atoms. A good correlation is seen between the layers of chemical shielding isotropy as well as anisotropy, σ iso, and Δσ, and the five local structures around carbon atoms. Successive BN units lead to larger 15N σ iso values (96.5–105.5 ppm) in comparison with the individual BN units (74.3–92.0 ppm in the ZZ-2(n, 0) and 47.4–61.7 ppm in the ZZ-3(n, 0)). Slight differences in the values of 11B σ iso clarify diminutive diversity in the electron densities of boron nuclei, while Δσ values indicate the more apparent range of changes.  相似文献   

10.
The crystal structure of Sc2Ru5B4 has been determined by single-crystal X-ray analysis. Sc2Ru5B4 crystallizes in the primitive monoclinic space group P2m with a = 9.983(6), b = 8.486(4), c = 3.0001(3)Å, γ = 90.01(7)°, Z = 2. Deviations from the orthorhombic space group Pbam-D92h are small but significant. Intensity measurements were obtained from a four-circle diffractometer. The structure was solved by Patterson methods and refined by full matrix least-squares calculation. R = ∑|ΔF|∑|F0| = 0.036 for an asymmetric set of 863 independent reflections (|F0|>2σ(F0)). The crystal structure is characterized by two different types of boron atoms: (a) isolated borons B(1) and B(3) in distorted trigonal Ru-prisms with tetrakaidekahedral metal coordination: 6Ru + 3Sc, and (b) boron atoms B(2) and B(4) with a pronounced tendency to form boron pairs (B(2)-B(2) = 1.86 Å, B(4)-B(4) = 1.89 Å); the metal coordination of these boron atoms is 6Ru + 2Sc. Sc atoms have a coordination number of 17 consisting of 10Ru + 2Sc + 5B. The crystal structure of Sc2Ru5B4 is a pentagon layer structure (Ru, B atoms) with a 4.3.4.32-secondary layer of Sc atoms. The structure is furthermore related to the structure types of Ti3Co5B2 and CeCo3B2. From powder photographs Sc2Os5B4 is isotypic. No superconductivity was observed for Sc2(Ru, Os)5B4 down to 1.5 K.  相似文献   

11.
The ternary system Nickel-Boron-Silicon was established at 850°C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiB4-x withx≈0.7 and SiB6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni6Si2B, the phase Ni4,6Si2B published byUraz andRundqvist can better be described by the formula Ni4.29Si2B1.43. In relation to further investigations we measured melting temperatures in ternary Ni-10 B?Si alloys by differential thermoanalysis.  相似文献   

12.
The shift ΔBov of the ESR line due to the saturation of the NMR of hyperfine-coupled nuclei (Overhauser shift) was measured for single crystals of the organic conductor (FA2)±PF6?. ΔBov is proportional to AP, where A is the average hyperfine interaction between the conduction electrons and the nuclei in resonance and P is the dynamic nuclear polarization. The proton spin relaxation times were measured from the time dependence of the Overhauser shift, ΔBov(t), after rf pulses.  相似文献   

13.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

14.
The microwave spectrum of 1-chloro-2-methyl propane has been recorded and lines assigned to 35Cl and 37Cl species in the unsymmetrical conformation. The rotational and distortion constants in MHz are: C4H935Cl, A = 7527.05, B = 2146.21, C = 1793.59, ΔJK = 4.15 × 10?3, δj = ?8.0 × 10?5; C4H937Cl, A = 7524.40. B = 2091.73, C = 1755.54, ΔJK = 2.5 × 10?3, δj = 2.0 × 10?4.  相似文献   

15.
A variable B0 field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high‐precision measurement of 93Nb NMR interaction parameters such as the isotropic chemical shift (δiso), quadrupole coupling constant and asymmetry parameter (CQ and ηQ), chemical shift span/anisotropy and skew/asymmetry (Ωδ and κ/ηδ) and Euler angles (α, β, γ) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR‐CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from NbV in most oxo environments, this study emphasises that a thorough variable B0 approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (?1/2?+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these 93Nb broadline data. These measurements reveal that the 93Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the NbV positions, with CQ values in the 0 to >80 MHz range being measured; similarly, the δiso (covering an approximately 250 ppm range) and Ω values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb? O bond angles and distances defining the immediate NbV oxo environment is complicated by longer‐range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the 93Nb NMR interaction parameters generated here are the all‐electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR‐CASTEP DFT approaches, which account for the short‐ and long‐range symmetries, periodicities and interaction‐potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.  相似文献   

16.
We report the results of a comprehensive 81Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium bromide ([C4mim]Br) and 1‐butyl‐2,3‐dimethylimidazolium bromide ([C4C1mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of 81Br spin‐lattice and spin‐spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. 81Br quadrupolar coupling constants (CQ) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7–53 MHz depending on ion pair structure. The CQ can be correlated with the distance between the cation–anion pairs in all the three states. The 81Br CQ values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C4C1mim]Br has higher ionicity than [C4mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The second-order rate constants k for the alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, in aqueous 50.9% acetonitrile have been measured spectrophotometrically at 25°C. The log k values for meta and para derivatives correlated well with the Hammett σm,p substituent constants. The log k values for ortho-substituted phenyl benzoates showed good correlations with the Charton equation, containing the inductive, σI, resonance, σ R, and steric, E s B, and Charton υ substituent constants. For ortho derivatives the predicted (log k X)calc values were calculated with equation (log k ortho)calc = (log k H AN)exp + 0.059 + 2.19σI + 0.304σ R + 2.79E s B ? 0.0164ΔEσI — 0.0854ΔEσ R, where DE is the solvent electrophilicity, ΔE = E ANE H20 = ?5.84 for aqueous 50.9% acetonitrile. The predicted (log k X)calc values for phenyl ortho-, meta- and para-substituted benzoates in aqueous 50.9% acetonitrile at 25°C precisely coincided with the experimental log k values determined in the present work. The substituent effects from the benzoyl moiety and aryl moiety were compared by correlating the log k values for the alkaline hydrolysis of phenyl esters of substituted benzoic acids, X-C6H4CO2C6H5, in various media with the corresponding log k values for substituted phenyl benzoates, C6H5CO2C6H4-X.  相似文献   

18.
Some new β-diketone derivatives of boron having the general formula B2O(OAc)4?n[OC(R)C:CON(Ph)N:C CH3]n (where n = 1 or 2; R = CH3, C2H5, C6H5 and p-ClC6H4) have been synthesised by the reactions of oxy-bis(diacetatoborane) and substituted pyrazolones, such as 4-acyl-3-methyl-1-phenyl-2-pyrazolin-5-ones (acyl = acetyl, propionyl, benzoyl and p-chlorobenzoyl) in dry toluene solution in 1:1 and 1:2 molar ratios. These derivatives have been characterised by elemental analysis, molecular weight measurements. Structures have been proposed on the basis of chemical reactions, IR, 1H and 11B NMR spectral studies.In the derivatives B2O(OAc)3[OC(R)C:CON(Ph)N:C CH3] two of the three acetate groups are unidentate and the third is bridged between two boron atoms along with BOB linkage. Whereas the derivatives B2O(OAc)2[OC(R)C:CON(Ph)N:C CH3]2 are the mixture of geometrical isomers.  相似文献   

19.
Lanthanum‐139 NMR spectra of stationary samples of several solid LaIII coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical‐shift anisotropy on the NMR spectra is non‐negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (CQ) range from 10.0 to 35.6 MHz, the spans of the chemical‐shift tensor (Ω) range from 50 to 260 ppm, and the isotropic chemical shifts (δiso) range from ?80 to 178 ppm. In general, there is a correlation between the magnitudes of CQ and Ω, and δiso is shown to depend on the La coordination number. Magnetic‐shielding tensors, calculated by using relativistic zeroth‐order regular approximation density functional theory (ZORA‐DFT) and incorporating scalar only or scalar plus spin–orbit relativistic effects, qualitatively reproduce the experimental chemical‐shift tensors. In general, the inclusion of spin–orbit coupling yields results that are in better agreement with those from the experiment. The magnetic‐shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical‐shift and EFG tensors in the molecular frame. This study demonstrates that solid‐state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

20.
The kinetics of the diazotization of o-, m-, p-chloroaniline in 0.005n- to 0.4n-methanolic HCl-solution at 25, 15, 0, ?10 ?20, and ?30°C was invertigated. It was found that the nitrosation reaction (the same as in1) $$C_6 H_4 ClNH_2 + NOCl \mathop \rightleftharpoons \limits^k C_6 H_4 ClNH_2 NO^ + + Cl^ - $$ is a proceeding advance-back-reaction. The decomposition of C6H4ClNH2NO+ by splitting off a proton is the rate determining step. The free activation enthalpies ΔG * for the nitrosation reaction, the activation entropies ΔS *, the activation enthalpies ΔH * and the activation energiesE a at the given temperatures are calculated. The experimentally found and the calculated velocities are given in Tables 1–6. The equilibrium constants of the o-, m-, p-chloroanilinium ions, and nitrosyl-chloride in methanol are indicated in Table 7, diagram 1. TheK M values (the ionic products of methanol, extrapolated at infinite dilution) together with theK A values of Table 7 give theK B values (p. 2) using the table10. The ΔG B values can be calculated using equation ΔG B = ?RTlnK B Fig 2 shows the linear dependance of the logarithmus of the ΔG * values from the logarithmus of theK B values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号