首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Within the general framework of mixture theory and by introducing the fictitious “fluid phase” as a mixture of a liquid and a gas, the conditions for localization of deformation into a shear band in the incremental response of partially saturated and fully saturated elastic–plastic porous media under undrained conditions are derived. The effect of porosity is included in the derivation. The explicit analytical expressions of the direction of shear band initiation and the corresponding hardening modulus of the porous media for the plane strain case are deduced, and a parametric analysis is made of the influence of the porosity on the properties of strain localization based on Mohr–Coulomb yield criterion. It is found that the dependence of the shear banding properties of partially saturated porous media on the porosity is related to the stress states and Poisson's ratio. However, the properties of the strain localization for the fully saturated porous media are almost independent of Poisson's ratio. Finally, on the basis of Mohr–Coulomb yield criterion, some solutions of the shear banding orientation for water-saturated granular materials are obtained, which are proved to be in good agreement with the experimental results reported by other researchers.  相似文献   

3.
Based on the classical nucleation theory, the effect of viscosity on bubble nucleation in water-saturated magma has been studied. A comparison with experimental data proves that viscosity has a pronounced effect on the rate of homogeneous nucleation in magma.  相似文献   

4.
The deformations in a plane strain tensile test are analyzed numerically, both for a solid characterized by a phenomenological corner theory of plasticity and for a nonlinear elastic solid. As opposed to the simplest flow theory of plasticity with a smooth yield surface, both these material models exhibit shear band instabilities at a realistic level of strain. Initial imperfections are specified in the form of thickness inhomogeneities. A long-wavelength imperfection grows into the well-known necking mode and subsequently, at a sufficiently high local strain level, bands of intense shear deformations develop in the necking region. The location of these shear bands is strongly influenced by the location of small strain concentrations near the surface, induced by various short-wave patterns of initial thickness imperfections. In accord with the non-uniform straining in the neck it is found that the intensity of the localized deformations varies along the bands, and some of the shear bands end inside the material.  相似文献   

5.
Constitutive equations are proposed in order to describe the elasto-viscoplastic damage behaviour of polymers. The behaviour is well accounted for by a modified Bodner–Partom model comprising hydrostatic and void evolution terms. The true stress–strain and volumetric strain behaviour of typical rubber-toughened glassy polymers (RTPMMA and HIPS) were experimentally determined at constant local true strain rate by using a video-controlled technique. Successful agreement is obtained between experimental results and the proposed model.  相似文献   

6.
A micromechanically based constitutive model for the elasto-viscoplastic deformation and texture evolution of semi-crystalline polymers is developed. The model idealizes the microstructure to consist of an aggregate of two-phase layered composite inclusions. A new framework for the composite inclusion model is formulated to facilitate the use of finite deformation elasto-viscoplastic constitutive models for each constituent phase. The crystalline lamellae are modeled as anisotropic elastic with plastic flow occurring via crystallographic slip. The amorphous phase is modeled as isotropic elastic with plastic flow being a rate-dependent process with strain hardening resulting from molecular orientation. The volume-averaged deformation and stress within the inclusions are related to the macroscopic fields by a hybrid interaction model. The uniaxial compression of initially isotropic high density polyethylene (HDPE) is taken as a case study. The ability of the model to capture the elasto-plastic stress-strain behavior of HDPE during monotonic and cyclic loading, the evolution of anisotropy, and the effect of crystallinity on initial modulus, yield stress, post-yield behavior and unloading-reloading cycles are presented.  相似文献   

7.
Summary By regarding geomaterials under loading as a mixture of intact and damaged parts, we investigate the influence of damage on the properties of strain localization in elastoplastic geomaterials at plane stress and plane strain. Conditions for the onset of strain localization including the effects of damage are derived for the cases of plane strain and plane stress. Discussed are the inclination of the localized band and the hardening modulus corresponding to the onset of strain localization. It is shown that the properties of the strain localization are dependent on the damage and the capacity of bearing hydrostatic pressure by the damaged part, and that damage may induce an earlier onset of strain localization and lead to instability of a geomaterial.accepted for publication 11 March 2004  相似文献   

8.
In this work a stability analysis on flow localization in the dynamic expansion of ductile rings is conducted. Within a 1-D theoretical framework, the boundary value problem of a radially expanding thin ring is posed. Based on a previous work, the equations governing the stretching process of the expanding ring are derived and solved using a linear perturbation method. Then, three different perfectly plastic material constitutive behaviours are analysed: the rate independent material, the rate dependent material showing constant logarithmic rate sensitivity and the rate dependent material showing non-constant and non-monotonic logarithmic rate sensitivity. The latter allows to investigate the interaction between inertia and strain rate sensitivity on necking formation. The main feature of this work is rationally demonstrate that under certain loading conditions and material behaviours: (1) decreasing rate sensitivity may not lead to more unstable material, (2) increasing loading rate may not lead to more stable material. This finding reveals that the relation between rate sensitivity and loading rate controls the unstable flow growth. Additionally a finite element model of the ring expansion problem is built in ABAQUS/Explicit. The stability analysis properly reflects the results obtained from the numerical simulations. Both procedures, perturbation analysis and numerical simulations, allow for emphasizing the interplay between rate sensitivity and inertia on strain localization.  相似文献   

9.
王俊奇  王亮  张杰 《爆炸与冲击》2012,32(3):333-336
采用落锤动态加载岩石实验系统,通过调节落锤质量、下落距离及活塞杆垫板材料,记录岩石瞬间形成冲击压力脉冲,研究压胀对不同岩石性质影响的规律。实验结果表明,压胀产生后岩石的性质发生了改变,岩石的渗透率有不同程度的增加,且岩石越致密,渗透率增加倍数越大;岩石的弹性模量和弹性极限随岩石体积的增加而降低;压胀产生后纵波和横波在岩石中的传播速度减小,岩样内部产生了微裂纹或原有微裂纹延伸扩展造成孔隙度增加。  相似文献   

10.
11.
Summary Explicit solutions for the formation of discontinuity bands are obtained, for a class of non-associative flow rules. Specialization to particular yield functions for pressure sensitive, dilatant or compactive materials is given.
Bemerkungen zur Lokalisierung der Verformungen für eine Klasse von nicht assoziierten plastischen Fließgesetzen
Übersicht Es werden explizite Lösungen für die Bildung von Unstetigkeitsflächen bei einer Klasse von nicht assoziierten plastischen Fließgesetzen hergeleitet. Diese werden insbesondere für einige spezielle Fließgesetze diskutiert, die zur Beschreibung von druckempfindlichen, dilatierenden oder kontrahierenden Materialien geeignet sind.


Presented at the workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, held at the Technical University of Gdansk (Poland), September 25–30, 1989  相似文献   

12.
Soil compaction can occur due to machine traffic and is an indicator of soil physical structure degradation. For this study 3 strain transducers with a maximum displacement of 5 cm were used to measure soil compaction under the rear tire of MF285 tractor. In first series of experiments, the effect of tractor traffic was investigated using displacement transducers and cylindrical cores. For the second series, only strain transducers were used to evaluate the effect of moisture levels of 11%, 16% and 22%, tractor velocities of 1, 3 and 5 km/h, and three depths of 20, 30 and 40 cm on soil compaction, and soil behavior during the compaction process was investigated. Results showed that no significant difference was found between the two methods of measuring the bulk density. The three main factors were significant on soil compaction at a probability level of 1%. The mutual binary effect of moisture and depth was significant at 1%, and the interaction of moisture, velocity, and depth were significant at 5%. The soil was compressed in the vertical direction and elongated in the lateral direction. In the longitudinal direction, the soil was initially compressed by the approaching tractor, then elongated, and ultimately compressed again.  相似文献   

13.
以严格平面应变解为基础,对简化平面应变土体模型即三个单元Voigt体串联模型的精度进行了研究.在各有关影响因素(如土体剪切模量、密度、剪切波速及结构物截面尺寸等)变化条件下,就两种模型土体作用于结构物交界面上的复刚度的实部和虚部分别进行了对比研究,全面地分析了两种模型复刚度的差异性,并进一步对桩顶受纵向激振力作用下的频域及时域动力响应进行了求解,研究了两种模型下桩顶动力响应的差别.结果表明,对土体复刚度而言,在大多数情况下,简化平面应变模型具有足够的精度,可以满足一般工程应用的需要;对桩顶频域响应和时域响应而言,简化平面应变模型已具有较高的精度,其误差可以忽略,具有很强的工程适用性,为该模型在相关领域的应用提供了坚实的理论依据.  相似文献   

14.
Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is investigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hardening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity framework, the initial thickness of the shear band and the strain rate distribution in both cases are predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the shear band depends on not only the material intrinsic length lcs but also the material constants, such as the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially, in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualitatively with the existing experimental observations. The results in this paper should be useful for engineers to predict the details of material failures due to plastic flow localization.  相似文献   

15.
16.
Hydrostatic stress can affect the non-elastic deformation and flow stress of polymeric materials and certain metallic alloys. This sensitivity to hydrostatic stress can also influence the fracture toughness of ductile materials, which fail by void growth and coalescence. These materials typically contain a non-uniform distribution of voids of varying size-scales and void shapes. In this work, the effects of void shape and microvoid interaction in pressure-sensitive materials are examined via a two-prong approach: (i) an axisymmetric unit-cell containing a single ellipsoidal void and (ii) a plane-strain unit-cell consisting of a single large void and a population of discrete microvoids. The representative material volume in both cases is subjected to physical stress states similar to highly stressed regions ahead of a crack. Results show that oblate voids and microvoid cavitation can severely reduce the critical stress of the material. These effects can be compounded under high levels of pressure-sensitivity. In some cases, the critical stress responsible for rapid void growth is reduced to levels comparable to the yield strength of the material. The contribution of void shape and pressure-sensitivity to the thermal- and moisture-induced voiding phenomenon in IC packages is also discussed.  相似文献   

17.
In crystalline materials, the experimental observation of the localization of plastic strains in particular directions is generally restricted to the surface of a sample containing some hundreds of grains, because of the difficulties underlying microstructural analysis. In these conditions, the determination of the morphological characteristics of localization can be limited by the poor statistical representativity of the domain of observation. The purpose of this work is to extend the analysis of localization – localization bands or else – to the 3D elastoplastic strain fields of a high-resolution representative volume element of a polycrystal.  相似文献   

18.
The problem of strain localization into planar bands of rate-independent elastoplastic solids with smooth yield surface and plastic potential is analyzed reconsidering the work of Rice and Rudnicki in 1980. It is shown that strain localization with elastic unloading on one side of the band first becomes possible either at localization in the comparison solid corresponding to the loading branch of the constitutive equation or at the snap-back threshold. The elastic unloading is shown to start from the condition of neutral loading, occurring in fact at the onset of localization. The case of localization with elastic unloading into the band and plastic loading outside that was not considered by Rice and Rudnicki is taken into account.  相似文献   

19.
20.
Inertialess flows of elasto-viscoplastic fluids inside a leaky cavity are numerically analyzed using the finite element technique, with the goal of understanding the influence of both the elastic and viscous effects on the topology of the yield surfaces of an elasto-viscoplastic material. Assuming that the collapse of the material microstructure is instantaneous, a mechanical model is composed of the governing equations of mass and momentum for incompressible fluids, and associated with a hyperbolic equation for the extra-stress tensor based on the Oldroyd-B model (Nassar et al., 2011). The main feature of the model is the consideration of the viscosity and relaxation time as functions of the strain rate to allow the shear-thinning of the viscosity and to restrict the elastic effects to the unyielded regions of the material. The numerical simulations are performed through a three-field Galerkin least-squares-type method in terms of the extra-stress tensor and the pressure and velocity fields. The results indicate that the material yield surfaces are strongly influenced by the interplay between the elastic and viscous effects, in accordance with recent experimental visualization of elasto-viscoplastic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号