首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering a cylindrical section of a tree subjected to loads independent of x3 as a relaxed Saint-Venant's problem, it was shown that plane sections remain plane. Since plane sections remain plane, the displacement equations for the neutral fiber derived using either the relaxed Saint-Venant's problem or elementary beam theory are equivalent. The stresses in the plane of the transverse cross-section were found to equal to zero. Therefore, it is appropriate to use elementary beam theory to estimate the three-dimensional stress functions when the wood is considered to be homogeneous. In addition the three-dimensional displacement equations allow the required elastic coefficients in cylindrical coordinates to be measured from full size samples.  相似文献   

2.
We consider the stress-strain state of a plate having a doubly connected domain S bounded from the outside by a circle of radius R and from the inside by an ellipse with two rectilinear cuts. The cuts lie symmetrically on the x-axis. The plate is subjected to various forces: the hole contour (the ellipse) is under the action of uniformly distributed forces of intensity q, and the cut shores are free of loads; at the points ±ib of the imaginary axis, the plate is under the action of a lumped force P.The solution of the problem is reduced to determining two analytic functions φ(z) and ψ(z) satisfying certain boundary conditions (depending on the type of the acting loads).We use the Kolosov-Muskhelishvili method to reduce the problem to a system of linear algebraic equations for the coefficients in the expansions of the functions φ(z) and ψ(z). The solution thus obtained is illustrated by numerical examples.  相似文献   

3.
This paper considers the analytical and semi-analytical solutions for anisotropic functionally graded magneto-electro-elastic beams subjected to an arbitrary load, which can be expanded in terms of sinusoidal series. For the generalized plane stress problem, the stress function, electric displacement function and magnetic induction function are assumed to consist of two parts, respectively. One is a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (z), and the other a linear polynomial of x with unknown coefficients depending on z. The governing equations satisfied by these z-dependent functions are derived. The analytical expressions of stresses, electric displacements, magnetic induction, axial force, bending moment, shear force, average electric displacement, average magnetic induction, displacements, electric potential and magnetic potential are then deduced, with integral constants determinable from the boundary conditions. The analytical solution is derived for beam with material coefficients varying exponentially along the thickness, while the semi-analytical solution is sought by making use of the sub-layer approximation for beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Two numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.  相似文献   

4.
For the plate formulation considered in this paper, appropriate three-dimensional elasticity solution representations for isotropic materials are constructed. No a priori assumptions for stress or displacement distributions over the thickness of the plate are made. The strategy used in the derivation is to separate functions of the thickness variable z from functions of the coordinates x and y lying in the midplane of the plate. Real and complex 3-dimensional elasticity solution representations are used to obtain three types of functions of the coordinates x, y and the corresponding differential equations. The separation of the functions of the thickness coordinate can be done by separately considering homogeneous and nonhomogeneous boundary conditions on the upper and lower faces of the plate. One type of the plate solutions derived involves polynomials of the thickness coordinate z. The other two solution forms contain trigonometric and hyperbolic functions of z, respectively. Both bending and stretching (or in-plane) solutions are included in the derivation.  相似文献   

5.
Spherical coordinates are r, θ, φ. The half-space extends in θ < π/2. The crack occurs along φ = 0. The region to be investigated is the solid space-triangle (or cone) between the three planes θ = π/2, φ = +0 and φ = 2π ? 0, which planes are to be taken stress-free.In this space-angle a state of stress is considered in terms of the cartesian stress components σxx = rλ?xx(λ, θ, φ); σxy = rλ(λ, θ, φ); etc. Possible values λ are determined from a characteristic (or eigenvalue) equation, expressing the condition that a determinant of infinite order is equal to zero. The root of λ which gives the most serious state of stress in the vertex region (the region r → 0) is the root closest to the limiting value Re λ > ?3/2. Knowledge of this state of stress, or at least of this value of λ is essential in the determination of the three-dimensional state of stress around a crack in a plate for distances of order of the plate thickenss.Along the front of the quarter-infinite crack (z-axis) the so called stress-intensity factor behaves like zλ+½ (z → 0) and thus tends to zero, respectively to infinity, accordingly to Re λ being >?½ or <?½. But in the region z → 0 the notion stress-intensity factor loses its meaning. The required state of stress passes into the well-known state of plane strain around a crack tip if Poisson's ratio (v) tends to zero. The computed state of stress for the incompressible medium (v = ½) is confirmed by experiment.  相似文献   

6.
This paper is concerned with the axisymmetric elastostatic problem related to the rotation of a rigid punch which is bonded to the surface of a nonhomogeneous half-space. The half-space is composed of an isotropic homogeneous coating in the form of layer, which is attached to the functionally graded half-space. The shear modulus of the FGM is assumed to vary in the direction of axis Oz normal to the boundary as μ1(z) = μ0(1 + αz)β, where μ0, α, β are positive constants. The punch undergoes rotation due to the action of the internal loads. By using Hankel's integral transforms, the mixed boundary value problem is reduced to dual integral equations, and next, to a Fredholm's integral equation of the second kind, which is solved numerically for the case of β = 2. The final results show the effect of non-homogeneity on the shear stresses and an unknown moment of punch rotation.  相似文献   

7.
This paper investigates the three-dimensional (3D) scattering of guided waves by a through-thickness cavity with irregular shape in an isotropic plate. The scattered field is decomposed on the basis of Lamb and SH waves (propagating and non-propagating), and the amplitude of the modes is calculated by writing the nullity of the total stress at the boundary of the cavity. In the boundary conditions, the functions depend on the through-thickness coordinate, z, but contrary to the case where the cavity has a circular shape, they also depend on the angular coordinate θ. This is dealt with by projecting the z-dependent functions onto a basis of orthogonal functions, and by expanding the θ-dependent functions in Fourier series. Examples include the scattering of the S0, SH0 and A0 modes by elliptical cavities with different values of aspect ratio, and the scattering of the S0 mode by a cavity with an arbitrary shape. Results obtained with this model are compared with results obtained with the finite element (FE) method, showing very good agreement.  相似文献   

8.
In this paper a refined higher-order global-local theory is presented to analyze the laminated plates coupled bending and extension under thermo-mechanical loading. The in-plane displacement fields are composed of a third-order polynomial of global coordinate z in the thickness direction and 1,2–3 order power series of local coordinate ζk in the thickness direction of each layer, which is identical to the 1,2–3 global-local higher-order theory by Li and Liu [Li, X.Y., Liu, D., 1997. Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Methods Eng. 40, 1197–1212] Moreover, a second-order polynomial of global coordinate z in the thickness direction is chosen as transverse displacement field. The transverse shear stresses can satisfy continuity at interfaces, and the number of unknowns does not depend on the layer numbers of the laminate.Based on this theory, a quadrilateral laminated plate element satisfying the requirement of C1 continuity is presented. By solving both bending and thermal expansion problems of laminates, it can be found that the present refined theory is very accurate and obviously superior to the existing 1,2–3 global-local higher-order theory. The most attractive feature of this theory is that the transverse shear stresses can be accurately predicted from direct use of constitutive equations without any post-processing method. It is also shown that the present quadrilateral element possesses higher accuracy.  相似文献   

9.
Summary  This paper deals with the theoretical treatment of a three-dimensional elastic problem governed by a cylindrical coordinate system (r,θ,z) for a medium with nonhomogeneous material property. This property is defined by the relation G(z)=G 0(1+z/a) m where G 0,a and m are constants, i.e., shear modulus of elasticity G varies arbitrarily with the axial coordinate z by the power product form. We propose a fundamental equation system for such nonhomogeneous medium by using three kinds of displacement functions and, as an illustrative example, we apply them to an nonhomogeneous thick plate (layer) subjected to an arbitrarily distributed load (not necessarily axisymmetric) on its surfaces. Numerical calculations are carried out for several cases, taking into account the variation of the nonhomogeneous parameter m. The numerical results for displacement and stress components are shown graphically. Received 10 May 1999; accepted for publication 15 August 1999  相似文献   

10.
We consider a spherically symmetric static problem of general relativity whose solution was obtained in 1916 by Schwarzschild for a metric form of a special type. This solution determines the metric coefficients of the exterior and interior Riemannian spaces generated by a gravitating solid ball of constant density and includes the so-called gravitational radius r g. For a ball of outer radius R=r g, the metric coefficients are singular, and hence the radius r g is traditionally assumed to be the radius of the event horizon of an object called a black hole. The solution of the interior problem obtained for an incompressible ideal fluid shows that the pressure at the ball center increases without bound for R=9/8r g, which is traditionally used for the physical justification of the existence of black holes. The discussion of Schwarzschild’s traditional solution carried out in this paper shows that it should be generalized with respect to both the geometry of the Riemannian space and the elastic medium model. In this connection, we consider the general metric form of a spherically symmetric Riemannian space and prove that the solution of the corresponding static problem exists for a broad class of metric forms. A special metric form based on the assumption that the gravitation generating the Riemannian space inside a fluid ball or an elastic ball does not change the ball mass is singled out from this class. The solution obtained for the special metric form is singular with respect to neither the metric coefficients nor the pressure in the fluid ball and the stresses in the elastic ball. The obtained solution is compared with Schwarzschild’s traditional solution.  相似文献   

11.
This paper deals with numerical solution of singular integral equations of the body force method in an interaction problem of revolutional ellipsoidal cavities under asymmetric uniaxial tension. The problem is solved on the superposition of two auxiliary loads; (i) biaxial tension and (ii) plane state of pure shear. These problems are formulated as a system of singular integral equations with Cauchy-type singularities, where the unknowns are densities of body forces distributed in the r, θ, z directions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, eight kinds of fundamental density functions proposed in our previous papers are applied. In the analysis, the number, shape, and spacing of cavities are varied systematically; then the magnitude and position of the maximum stress are examined. For any fixed shape and size of cavities, the maximum stress is shown to be linear with the reciprocal of squared number of cavities. The present method is found to yield rapidly converging numerical results for various geometrical conditions of cavities.  相似文献   

12.
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.  相似文献   

13.
In this paper, a numerical method for the linear and geometrically non-linear static analysis of thin plates is presented. The method begins with the elasticity equations pertaining to strain components, stresses, displacement components, strain energy and work due to externally applied loads. The plate geometry is defined by a quadrangular boundary with four straight edges and the natural coordinates in conjunction with the Cartesian coordinates are used to map the geometry. The matrix equation of equilibrium is derived using the work-energy principle with the displacement fields expressed by algebraic polynomials, the coefficients of which are then manipulated to satisfy the kinematic boundary conditions. To validate the results from the present method, square plates having all sides fully fixed and all sides simply supported without in-plane movement are analysed. Comparison is made for the uniformly loaded square plate with the results obtained by Levy who solved the non-linear plate bending problem using the Th.von Karmans equations. Rhombic plates are examined and numerical results corresponding to these cases are presented in this paper. Very good comparison of the results regarding deflection and bending stresses with other sources available in the literature is found.  相似文献   

14.
This paper considers the bending of transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate, subject to a transverse load in the form of qrk (k is zero or a finite even number). The differential equations satisfied by stress functions for the particular problem are derived. An elaborate analysis procedure is then presented to derive these stress functions, from which the analytical expressions for the axial force, bending moment and displacements are obtained through integration. The method is then applied to the problem of transversely isotropic functionally graded circular plate subject to a uniform load, illustrating the procedure to determine the integral constants from the boundary conditions. Analytical elasticity solutions are presented for simply-supported and clamped plates, and, when degenerated, they coincide with the available solutions for an isotropic homogenous plate. Two numerical examples are finally presented to show the effect of material inhomogeneity on the elastic field in FGM plates.  相似文献   

15.
Corrugated plates are widely used in modern constructions and structures, because they, in contrast to plane plates, possess greater rigidity. In many cases, such a plate can be modeled by a homogeneous anisotropic plate with certain effective flexural and tensional rigidities. Depending on the geometry of corrugations and their location, the equivalent homogeneous plate can also have rigidities of mutual influence. These rigidities allow one to take into account the influence of bending moments on the strain in the midplane and, conversely, the influence of longitudinal strains on the plate bending [1]. The behavior of the corrugated plate under the action of a load normal to the midsurface is described by equations of the theory of flexible plates with initial deflection. These equations form a coupled system of nonlinear partial differential equations with variable coefficients [2]. The dependence of the coefficients on the coordinates is determined by the corrugation geometry. In the case of a plate with periodic corrugation, the coefficients significantly vary within one typical element and depend on the values of local variables determined in each of the typical elements. There is a connection between the local and global variables, and therefore, the functions of local coordinates are simultaneously functions of global coordinates, which are sometimes called rapidly oscillating functions [3].One of the methods for solving the equations with rapidly oscillating coefficients is the asymptotic method of small geometric parameter. The standard procedure of this method usually includes preparatory stages. At the first stage, as a rule, a rectangular periodicity cell is distinguished to be a typical element. At the second stage, the scale of global coordinates is changed so that the rectangular structure periodicity cells became square cells of size l × l. The third stage consists in passing to the dimensionless global coordinates relative to the plate characteristic dimension L. As a result, the dependence between the new local variables and the new scaled dimensionless variables is such that the factor 1/α, where α=l/L ? 1 is a small geometric parameter, appears in differentiating any function of the local coordinate with respect to the global coordinate. After this, the solution of the problem in new coordinates is sought as an asymptotic expansion in the small geometric parameter [1], [4–10].We note that, in the small geometric parameter method, the asymptotic series simultaneously have the form of expansions in the gradients of functions depending only on the global coordinates. This averaging procedure can be applied to linear and nonlinear boundary value problems for differential equations with variable periodic coefficients for which the periodicity cell can be affinely transformed into the periodicity cube. In the case of an arbitrary dependence of the coefficients on the coordinates (including periodic dependence), another averaging technique can be used in linear problems. This technique is based on the possibility of the integral representation of the solution of the original problem for the linear equation with variables coefficients in terms of the solution of the same problem for an equation of the same type but with constant coefficients [11–13]. The integral representation implies that the solution of the original problem can be represented in the form of the series in the gradients of the solution of the problem for the equation with constant coefficients [13].The aim of the present paper is to develop methods for calculating effective characteristics of corrugated plates. To this end, we first write out the equilibrium equations for a flexible anisotropic plate, which is inhomogeneous in the thickness direction and in the horizontal projection, with an initial deflection. We write these equations in matrix form, which allows one to significantly reduce the length of the expressions and to simplify further calculations. After this, we average the initial matrix equations with variable coefficients. The averaging procedure implies the statement of problems such that, after solving them, we can calculate the desired effective characteristics. By way of example, we consider the case of a corrugated plate made of a homogeneous isotropic material whose corrugations are hexagonal in the horizontal projection. In this case, we obtain approximate expressions for the components of the effective tensors of flexural rigidity and longitudinal compliance and expressions for the effective plate thickness.  相似文献   

16.
This paper offers a three-dimensional elasticity-based variational Ritz procedure to examine the natural vibrations of an elastic hollow torus with annular cross-section. The associated energy functional minimized in the Ritz procedure is formulated using toroidal coordinates (r,q, j)({r,\theta , \varphi}) comprised of the usual polar coordinates (r, θ) originating at each circular cross-sectional center and a circumferential coordinate j{\varphi} around the torus originating at the torus center. As an enhancement to conventional use of algebraic–trigonometric polynomials trial series in related solid body vibration studies in the associated literature, the assumed torus displacement, u, v and w in the r, θ and j{\varphi } toroidal directions, respectively, are approximated in this work as a triplicate product of Chebyshev polynomials in r and the periodic trigonometric functions in the θ and j{\varphi} directions along with a set of generalized coefficients. Upon invoking the stationary condition of the Lagrangian energy functional for the elastic torus with respected to these generalized coefficients, the usual characteristic frequency equations of natural vibrations of the elastic torus are derived. Upper bound convergence of the first seven non-dimensional frequency parameters accurate to at least five significant figures is achieved by using only ten terms of the trial torus displacement functions. Non-dimensional frequencies of elastic hollow tori are examined showing the effects of varying torus radius ratio and cross-sectional radius ratio.  相似文献   

17.
The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength gpi situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t = τ. A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r = b. The governing heat conduction equation is solved by using the integral transform method, and results are obtained in series form in terms of Bessel functions. The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically.  相似文献   

18.
It is observed that one of the integral conservation laws of elastostatics, the so-called M-integral conservation law, has certain special features which make it possible to apply this conservation law for a class of plane elastic crack problems in order to calculate the elastic stress intensity factor in each case without solving the corresponding boundary value problem. The main characteristics which a problem must have in order for the approach to be useful are (1) for points very near to the origin of coordinates, the known elastic stresses are 0(r?r) where r is the radial coordinate and γ ? 1, (2) for points very far from the origin, the known elastic stresses are 0(r?r) where γ ? 1, and (3) the boundary of the body is made up of radial lines on which certain traction and/or displacement conditions are satisfied. The approach is demonstrated by determining the stress intensity factors for four familiar elastic crack problems directly from the conservation law, and then four similar additional applications of the M-integral conservation law are discussed.  相似文献   

19.
The spherical waves in an elastic-plastic, isotropically work-hardening medium generated by radial stress uniformly applied at a spherical cavity r=r0 are studied (r denoting radial distance). The radial stress and its time derivative at the cavity may be discontinuous at time t=t0. If the applied radial stress is continuous while its time derivative is not, the discontinuity at (r0, t0) propagates into r > r0 along the characteristics and/or the elastic-plastic boundaries. If the applied radial stress itself is discontinuous, the discontinuity may propagate into r > r0 in the form of a shock wave, or a centered simple-wave, or a combination of both. In any case, the solutions in the neighborhood of (r0, t0) are obtained for all possible combinations of discontinuous loadings applied at r=r0. This is a systematic study on the nature of the solution near (r0, t0) where the applied load is discontinuous. Solutions for special materials, such as linearly work-hardening or ideally-plastic ones, and for special applied loadings at the cavity obtained by other workers, in which the nature of the solutions near (r0, t0) are assumed a priori rather than determined, are compared with the results obtained here. Some of the solutions are found to be in error because of incorrect a priori assumptions.  相似文献   

20.
Thermoelastic data are combined with an Airy stress function to determine the individual stresses on and near the boundary of a circular hole which is located below a concentrated edge-load in a plate. Coefficients of the stress function are evaluated from the measured temperatures and the local traction-free conditions are satisfied by imposing srr = trq = 0 {\sigma_{r{\rm{r}}}} = {\tau_{r\theta }} = 0 analytically on the edge of the hole. The latter has the advantage of reducing the number of coefficients in the stress function series. The method simultaneously smoothes the measured input data, satisfies the local boundary conditions and evaluates individual stresses on, and in the neighbourhood of, the edge of the hole. Attention is paid to how many coefficients to retain in the stress function series. Although the presence of high stress concentration factors, together with a hole-diameter-to-plate-thickness ratio of only two, result in some three-dimensional effects, these are relatively small and the agreement between the thermoelastic values, those from recorded strains and FEM-predicted surface stresses is good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号