首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler–Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.  相似文献   

2.
The exact analytical solution of buckling in delaminated columns is presented. In order to investigate analytically the influence of axial and shear strains on buckling loads the geometrically exact beam theory is employed with no simplification of the governing equations. The critical forces are then obtained by the linearized stability theory. In the paper, we limit the studies to linear elastic columns with a single delamination, but with arbitrary longitudinal and vertical asymmetry of delamination and arbitrary boundary conditions. The studies of quantitative and qualitative influence of transverse shear are shown in detail and extensive results for buckling loads with respect to delamination length, thickness and longitudinal position are presented.  相似文献   

3.
复合材料襟翼壁板屈曲失稳行为的栅线投影实验研究   总被引:1,自引:0,他引:1  
本文利用栅线投影测量方法研究了蜂窝夹层板、工字型及T型加筋板三种不同结构形式复合材料襟翼壁板在压缩载荷下的屈曲失稳行为,得到了不同形式结构件屈曲的全场离面位移分布规律,分析了各自的屈曲失稳模式.研究结果表明,栅线投影测量方法在大尺度复合材料结构失稳变形测试中具有可行性;在相同面板尺寸条件下,工字型加筋复合材料襟翼壁板屈曲临界载荷最大,承载能力最强.本文结果可为飞机复合材料结构设计提供实验依据.  相似文献   

4.
A higher-order global–local theory is proposed based on the double-superposition concept for free vibration and dynamic buckling analyses of viscoelastic composite/sandwich plates subjected to thermomechanical loads. In contrast to all theories proposed so far for analysis of the viscoelastic plates, the continuity conditions of the transverse shear and normal stresses at the layer interfaces and the nonzero traction conditions at the top and bottom surfaces of the sandwich plates are satisfied. Another novelty is that these conditions may be satisfied for viscoelastic plates with temperature-dependent material properties and nonlinear behaviors subjected to thermomechanical loads. Furthermore, transverse flexibility is also taken into account. Some dynamic buckling/wrinkling analyses of the viscoelastic plates are performed in the present paper, for the first time. Comparisons made between results of the paper and results reported by well-known references confirm the accuracy and the efficiency of the proposed theory and the relevant solution algorithm.  相似文献   

5.
Rahman Seifi  Ali Reza Kabiri 《Meccanica》2013,48(10):2525-2539
Critical buckling load is important in investigation of behaviors of thin plates or shells. The presence of cracks in these structures can affects their safety factor with respect to the common modes of failure such as buckling. Some analytical solutions were obtained for un-cracked plates with different boundary conditions. Their numerical results have good agreement with these solutions. In this paper, we also studied the effects of lateral loads and constraints on the critical buckling load of cracked plates under axial compression, experimentally and numerically. Effects of length and orientation of cracks are investigated in presence of the lateral loads. Finally, tests data are compared with the results of numerical calculations.  相似文献   

6.
对于面内阶跃载荷作用下矩形薄板的塑性动力屈曲问题,将临界应力和屈曲惯性项指数参数作为双特征参数求解。由相邻平衡准则导出失稳控制方程,由动力屈曲发生瞬间的能量转换和守恒准则,导出波阵面上的屈曲变形补充约束条件。失稳控制方程、边界条件、塑性波阵面上的连续条件和补充约束条件构成了定量求解两个特征参数和动力屈曲模态的完备条件。研究了矩形薄板塑性动力屈曲过程中板的厚宽比、冲击载荷大小、屈曲模态和临界屈曲长度之间的关系。  相似文献   

7.
为了研究冲击载荷作用下考虑应力波效应弹性矩形薄板的动力屈曲,根据动力屈曲发生瞬间的能量转换和守恒准则,导出板的屈曲控制方程和波阵面上的补充约束条件,真实的屈曲位移应同时满足控制方程和波阵面上的附加约束条件。满足上述条件,建立了该问题的完整数值解法,对屈曲过程中冲击载荷、屈曲模态和临界屈曲长度之间的关系进行研究,定量计算了横向惯性效应对提高薄板动力屈曲临界应力的贡献。研究表明:板的厚宽比一定时,临界屈曲长度随冲击载荷的增大而减小;由于屈曲时的横向惯性效应,应力波作用下薄板一阶临界力参数是相应边界板的静力失稳临界力参数的1.5倍;随着边界约束逐渐减弱,板临界力参数逐渐减小,动力特征参数逐渐增大。  相似文献   

8.
The sinusoidal shear deformation plate theory, presented in the first part of this paper, is used to study the buckling and free vibration of the simply supported functionally graded sandwich plate. Effects of rotatory inertia are considered. The critical buckling load and the vibration natural frequency are investigated. Some available results for sandwich plates non-symmetric about the mid-plane can be retrieved from the present analysis. The influences of the transverse shear deformation, plate aspect ratio, side-to-thickness ratio and volume fraction distributions are studied. In addition, the effect of the core thickness, relative to the total thickness of the plate, on the critical buckling load and the eigenfrequencies is investigated.  相似文献   

9.
本文研究了具有任意位置透型脱层的复合材料梁的屈曲问题。基于弹性理论建立了复合材料脱层梁的基本方程式。对脱层梁进行了分区处理,利用B样条函数作为位移型函数的基函数,方便地描述了脱层长度、脱层位置。考虑边界条件、区间位移连续性条件和弯矩剪力的平衡条件以及纵向内力的附加条件,对基本方程式进行了求解。得出了脱层位置不同,脱层长度不同的屈曲荷载的变化规律,并与轴对称脱层时的屈曲荷载进行了比较,认为层合梁考虑脱层对屈曲的影响是非常必要的。  相似文献   

10.
Various static and dynamic aspects of post-buckled thin plates, including the transition of buckled patterns, post-buckling dynamics, secondary bifurcation, and dynamic snapping (mode jumping phenomenon), are investigated systematically using asymptotical and non-stationary finite element methods. In part I, the secondary dynamic instability and the local post-secondary buckling behavior of thin rectangular plates under generalized (mechanical and thermal) loading is investigated using an asymptotic numerical method which combines Koiter’s nonlinear instability theory with the finite element technique. A dynamic multi-mode reduction method—similar to its static single-mode counterpart: Liapunov–Schmidt reduction—is developed in this perturbation approach. Post-secondary buckling equilibrium branches are obtained by solving the reduced low-dimensional parametric equations and their stability properties are determined directly by checking the eigenvalues of the resulting Jacobian matrix. Typical post-secondary buckling forms—transcritical, supercritical and subcritical bifurcations are observed according to different combinations of boundary conditions and load types. Geometric imperfection analysis shows that not only the secondary bifurcation load but also changes in the fundamental post-secondary buckling behavior are affected. The post-buckling dynamics and the global analysis of mode jumping of the plates are addressed in part II.  相似文献   

11.
In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.  相似文献   

12.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

13.
Summary The static and dynamic responses of anisotropic spherical shells under a uniformly distributed transverse load are investigated. Analytical solutions using the mixed variational formulation are presented for spherical shells subjected to various boundary conditions. Numerical results of a refined mixed first-order shear deformation theory for natural frequencies, critical buckling, center deflections and stresses are compared with those obtained using the classical shell theory. A variety of simply-supported and clamped boundary conditions are considered and comparisons with the existing literature are made. The sample numerical results presented herein for global structural behaviour of monoclinic spherical shells should serve as references for future comparisons.  相似文献   

14.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

15.
Abstract

Since the two-directional functionally graded (2D-FG) materials can satisfy the new requirements raised based on the elimination of the stress concentration, delamination and cracking problems accompanying with the low cost and lightweight on the structures without sacrificing the stiffness and strength, the structural analyses of these structures become more important than ever. Moreover, the usage of the micro-electromechanical systems composed of 2D-FG materials has been increasing in automotive, military, space, biomedical, and nuclear energy industries. Within this study, the free vibration and buckling behaviors of 2D-FG porous microbeams are investigated based on the modified couple stress theory by employing a transverse shear-normal deformation beam theory and using finite element method. The effects of the thickness to material length scale parameter (MLSP) accompanying with the micro-porosity volume fraction ratio, boundary condition, aspect ratio, and gradient index on the dimensionless fundamental frequencies and dimensionless critical buckling loads of the 2D-FG porous microbeams are investigated. Moreover, with assumption of the variable material length scale parameters (VMLSP), the computed results are compared with ones obtained by employing constant MLSP. It is found that VMLSP increases the stiffness of the 2D-FG porous microbeams and effects the free vibration and buckling responses of these structures.  相似文献   

16.
黏弹性结构蠕变屈曲特性的分析   总被引:6,自引:3,他引:6  
彭凡  傅衣铭 《力学学报》2003,35(3):353-356
分析了线黏弹性正交铺设层合板的蠕变失稳问题,由相空间的特征方程解出临界载荷,经Laplace数值反演得到屈曲载荷与时间的关系;然后,通过建立扰动模型和分析变形的有界与无界增长,讨论了黏弹性结构延迟失稳的特性,解释了临界载荷与失稳时间的具体含义.  相似文献   

17.
Stitching has been used as through-thickness reinforcement to reduce the effects of delamination. In stitching, the delamination will be held by stitches in the form of crack/interface bridging. In the present work, the reinforcement of stitching threads is assumed to provide continuous linear restoring tractions opposing the delamination opening. A generalized mathematical model is developed to study the buckling analysis of two layer delaminated beams with bridging by using Rayleigh–Ritz energy method. The delaminated beam is analyzed as four interconnected beams using the delamination as their boundary. Lagrange multipliers are used to enforce the boundary and continuity conditions between the junctions of the interconnected beams. The developed mathematical model is solved as an eigenvalue problem in which the lowest eigenvalue gives the buckling load. Effective-bridging modulus, a new nondimensionalized parameter, is introduced to study the influence of bridging on the delamination buckling. It is shown that bridging strongly influences the buckling load of the delaminated beams and a monotonic relation is observed between the buckling load and the effective-bridging modulus. Parametric studies in terms of delamination sizes and locations along spanwise and thicknesswise positions on the buckling load have been carried out. The bridging is found to be effective for shallow delaminations of moderate length, and for deep and long delaminations. Spanwise positions of delamination strongly influence the buckling loads. In addition, an analytical model for obtaining upper bounds of the buckling load is developed by using Euler–Bernoulli beam theory. Effective-slenderness ratio, a new nondimensionalized parameter is defined and it is found to be controlling the buckling mode configurations, i.e., local, global and mixed modes.  相似文献   

18.
As a first endeavor, the buckling analysis of functionally graded (FG) arbitrary straight-sided quadrilateral plates rested on two-parameter elastic foundation under in-plane loads is presented. The formulation is based on the first order shear deformation theory (FSDT). The material properties are assumed to be graded in the thickness direction. The solution procedure is composed of transforming the governing equations from physical domain to computational domain and then discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. After studying the convergence of the method, its accuracy is demonstrated by comparing the obtained solutions with the existing results in literature for isotropic skew and FG rectangular plates. Then, the effects of thickness-to-length ratio, elastic foundation parameters, volume fraction index, geometrical shape and the boundary conditions on the critical buckling load parameter of the FG plates are studied.  相似文献   

19.
受弯脱层层板的局部失稳临界载荷的有限元分析   总被引:1,自引:1,他引:1  
李跃宇  邹振民 《力学季刊》1998,19(2):125-129
含脱层的复合材料层板承受弯曲载荷作用会产生跳跃失稳,还常常引起脱层扩展,从而导致结构失效。本文用基于一阶剪切层板理论的几何非线性有限单元法分析了受弯曲曲载荷作用下含脱层板的人稳的临界载荷。本文指出分叉失稳产生了跳跃失稳,而该跳跃失稳与浅圆拱或薄圆柱壳受向心压力作用下的跳跌 同,在整体平衡路径上没有一个极限点。本文对临界载计算结果比使用能量准则的结果要小,文中给出了原因。  相似文献   

20.
The relationship between the critical buckling loads of functionally graded material(FGM) Levinson beams(LBs) and those of the corresponding homogeneous Euler-Bernoulli beams(HEBBs) is investigated. Properties of the beam are assumed to vary continuously in the depth direction. The governing equations of the FGM beam are derived based on the Levinson beam theory, in which a quadratic variation of the transverse shear strain through the depth is included.By eliminating the axial displacement as well as the rotational angle in the governing equations,an ordinary differential equation in terms of the deflection of the FGM LBs is derived, the form of which is the same as that of HEBBs except for the definition of the load parameter. By solving the eigenvalue problem of ordinary differential equations under different boundary conditions clamped(C), simply-supported(S), roller(R) and free(F) edges combined, a uniform analytical formulation of buckling loads of FGM LBs with S-S, C-C, C-F, C-R and S-R edges is presented for those of HEBBs with the same boundary conditions. For the C-S beam the above-mentioned equation does not hold. Instead, a transcendental equation is derived to find the critical buckling load for the FGM LB which is similar to that for HEBB with the same ends. The significance of this work lies in that the solution of the critical buckling load of a FGM LB can be reduced to that of the HEBB and calculation of three constants whose values only depend upon the throughthe-depth gradient of the material properties and the geometry of the beam. So, a homogeneous and classical expression for the buckling solution of FGM LBs is accomplished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号