首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A flat, compressed elastic film on a viscous layer is unstable. The film can form wrinkles to reduce the elastic energy. In this paper, we are interested in the two-dimensional models for thin films bonded to a viscous layer and in particular we focus on generic instabilities evidenced in this context by Suo and coworkers [Huang, Z., Hong, W., Suo, Z., 2005. Non linear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118; Lo, Y.H., 1991. New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2320]. We present a rigorous linear perturbation analysis for anisotropic materials, that allows the prediction of both the orientation of the corrugations of the thin film, and the wavelength that maximize the growth velocity. Finally, we compare our theoretical estimates to experimental results for a In0.65Ga0.35As alloy constraint to InP.  相似文献   

2.
It is shown that the critical Rayleigh number which characterizes the stability of a thin charged viscous fluid film on the surface of a rigid spherical core develops rapidly with decrease in the film thickness to 100 nm when the effect of the disjoining pressure becomes significant. The dependence of the instability growth rate on the thickness of the fluid layer is obtained by analyzing the dispersion relation numerically. Yaroslavl’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 102–106, January–February, 1999.  相似文献   

3.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

4.
The stability characteristics of an ultra-thin layer of a viscous liquid flowing down a cylindrical fibre are investigated by a linear theory. The film with the thickness less than 100 nm is driven by an external force and under the influence of the van der Waals forces. The results show that, when the relative film thickness decreases, the curvature of the fibre depresses the development of the linear perturbations, whereas the van der Waals forces promote the instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from the absolute instability to the convective instability, indicating that the van der Waals forces can enlarge the absolutely unstable region. Furthermore, the surface tension can cause the development of the absolute instability, whereas the external force has an opposite effect.  相似文献   

5.
A destabilization by wind stress of a homogeneous visco-elastic ice layer of infinite horizontal extent and finite thickness floating on a water layer of finite depth is studied. The water is assumed to be weakly compressible; the viscous dissipation in the water layer is shown to be negligible compared to that in the ice layer. In the model, we assume that a homogeneous wind shear stress is applied to the upper surface of the ice layer at near field and the compression within the ice layer is fixed below the maximum admissible value, i.e. below the value above which ice can no longer be treated as an elastic material. The effect of viscosity is shown to stabilize the acoustic mode and all the unstable seismic modes that in a purely elastic model, treated by Brevdo and Il'ichev [Brevdo, L., Il'ichev, A., 2001. Multi-modal destabilization of a floating ice layer by wind stress. Cold Reg. Sci. Technol. 33, 77–89], possess unbounded growth rates for a growing wave number. The buckling mode is unstable in the domain of parameters considered. In all the cases treated, the model is marginally absolutely stable. The localized unstable disturbances propagate against the wind. The spatially amplifying waves in the model amplify in the direction opposite to the wind direction. The stability results are well approximated by those in a Kirchoff–Love thin ice plate model.  相似文献   

6.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

7.
On the basis of a simplified system of equations we study the process of development and stability of wave flows in a thin layer of a viscous liquid. Any unstable disturbance of the laminar flow grows and leads to the establishment of the wave regime. The time to establish the flow changes little for large flow rates, but increases sharply with reduction of the flow rate. Given the same amplitudes of the initial disturbances, the optimum regimes which provide the greatest flow rate in a layer of given average thickness develop more rapidly than the other regimes. All the wave regimes are unstable to disturbances in the form of traveling waves. With moderate flow rates, the optimum regimes will be most stable to near-by disturbances.Strictly periodic wave flows in a thin layer of a viscous liquid under the influence of the gravity force were calculated in [1], Various flow wave regimes which differ in wavelength can theoretically be established for a given liquid flow rate. In particular, there is a wavelength for which the flowing layer exhibits minimum average thickness (and maximum flow rate for a given average thickness). These optimum regimes correspond closely to the experimental data [2]; however, with regard to calculation technique these regimes are no different from the others. In the following we make a comparison of the wave regimes on the basis of the nature of their development and stability.  相似文献   

8.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

9.
A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.  相似文献   

10.
A compressed elastic film on a compliant substrate can form wrinkles. On an elastic substrate, equilibrium and energetics set the critical condition and select the wrinkle wavelength and amplitude. On a viscous substrate, wrinkle grows over time and the kinetics selects the fastest growing wavelength. More generally, on a viscoelastic substrate, both energetics and kinetics play important roles in determining the critical condition, the growth rate, and the wavelength. This paper studies the wrinkling process of an elastic film on a viscoelastic layer, which in turn lies on a rigid substrate. The film is elastic and modeled by the nonlinear von Karman plate theory. The substrate is linear viscoelastic with a relaxation modulus typical of a cross-linked polymer. Beyond a critical stress, the film wrinkles by the out-of-plane displacement but remains bonded to the substrate. This study considers plane strain wrinkling and neglects the in-plane displacement. A classification of the wrinkling behavior is made based on the critical conditions at the elastic limits, the glassy and rubbery states of the viscoelastic substrate. Linear perturbation analyses are conducted to reveal the kinetics of wrinkling in films subjected to intermediate and large compressive stresses. It is shown that, depending on the stress level, the growth of wrinkles at the initial stage can be exponential, accelerating, linear, or decelerating. In all cases, the wrinkle amplitude saturates at an equilibrium state after a long time. Subsequently, both amplitude and wavelength of the wrinkle evolve, but the process is kinetically constrained and slow compared to the initial growth.  相似文献   

11.
Here we consider the stability of flow along a streamwise corner formed by the intersection of two large flat plates held perpendicular to each other. Self-similar solutions for the steady laminar mean flow in the corner region have been obtained by solving the boundary layer equations for zero and nonzero streamwise pressure gradients. The stability of the mean flow is investigated using linear stability analysis. An eigensolver has been developed to solve the resulting linear eigenvalue problem either in a global mode to obtain an approximation to all the dominant eigenmodes or in a local mode to refine a particular eigenmode. The stability results indicate that the entire spectrum of two-dimensional and oblique viscous modes of a two-dimensional Blasius boundary layer is active in the case of a corner layer as well, but away from the cornerline. In a corner region of finite spanwise extent, the continuous spectrum of oblique modes degenerates to a discrete spectrum of modes of increasing spanwise wave number. The effect of the corner on the two-dimensional viscous instability is small and decreases the growth rate. The growth rate of outgoing oblique disturbances is observed to decrease, while the growth rate of incoming oblique disturbances is enhanced by the corner. This asymmetry between the outgoing and incoming viscous modes increases with increasing obliqueness of the disturbance. The instability of a zero pressure gradient corner layer is dominated by the viscous modes; however, an inviscid corner mode is also observed. The critical Reynolds number of the inviscid mode rapidly decreases with even a small adverse streamwise pressure gradient and the inviscid mode becomes the dominant one. Received 17 March 1998 and accepted 28 April 1999  相似文献   

12.
阎凯  宁智  吕明 《计算力学学报》2012,29(6):893-900
利用线性稳定性理论进行了射流液体粘性对圆环旋转液膜射流稳定性影响的研究,推导出了三维扰动下具有固体旋涡型速度分布的圆环旋转粘性液膜射流的色散方程;在此基础上进行了类反对称模式与类对称模式下的圆环旋转粘性液膜射流的三维不稳定性分析。研究结果表明,在类反对称模式下,液体粘性超过一定值后,射流最大扰动增长率随液体粘性的增加而迅速减小;轴对称模态的射流特征频率产生一个突降变化;随液体粘性增加,轴对称模态不稳定波数范围减小,非轴对称模态不稳定波数范围呈现出先减小后增大趋势。在类对称模式下,液体粘性对射流最大扰动增长率的影响主要体现在对非轴对称模态的影响上;液体粘性只在粘性较大时才会对非轴对称模态射流特征频率产生一定影响;液体粘性超过一定值后,轴对称模态与非轴对称模态的不稳定波数范围都会快速下降。  相似文献   

13.
A thin metallic film deposited on a compliant polymeric substrate begins to wrinkle under compression induced in curing process and afterwards cooling of the system. The wrinkle mode depends upon the thin film elasticity, thickness, compressive strain, as well as mechanical properties of the compliant substrate. This paper presents a simple model to study the modulation of the wrinkle mode of thin metallic films bonded on viscous layers in external electric field. During the procedure, linear perturbation analysis was performed for determining the characteristic relation that governs the evolution of the plane-strain wrinkle of the thin films under varying conditions, i.e., the maximally unstable wrinkle mode as a function of the film surface charge, film elasticity and thickness, misfit strain, as well as thickness and viscosity of the viscous layer. It shows that, in proper electric field, thin film may wrinkle subjected to either compression or tension. Therefore, external electric field can be employed to modulate the wrinkle mode of thin films. The present results can be used as the theoretical basis for wrinkling analysis and mode modulation in surface metallic coatings, drying adhesives and paints, and microelectromechanical systems (MEMS), etc.  相似文献   

14.
利用等热流密度加热条件下降膜流动的三维模型方程进行线性稳定性分析和数值模拟。线性稳定性分析表明,模型方程在小到中等Reynolds数下都适用,并且流向不稳定性增长率随着Reynolds数和Marangoni数增加而增加,展向不稳定性增长率则随着Marangoni数增加而增加,随着Reynolds数增加而减小,流向和展向对扰动波数都存在一个不稳定区间。三维数值模拟表明,在等热流密度加热条件下,液膜在随机扰动的情况下最终会形成带孤立波的三维溪流状结构,液膜与气体的换热也因溪流状结构的出现而加强;在随机扰动的基础上引入占优势地位的展向最不稳定扰动会使得换热增强,液膜会提前破裂;在随机扰动的基础上引入占优势地位的流向最不稳定扰动时,液膜的换热会增强,但不会提前破裂;在随机扰动的基础上同时引入占优势地位的流向和展向最不稳定扰动时,换热会加强且液膜会提前破裂。  相似文献   

15.
The viscous and conductivity effects on the instability of a rapidly expanding material interface produced by a spherical shock tube are investigated through the employment of a high-order WENO scheme. The instability is influenced by various mechanisms, which include (a) classical Rayleigh–Taylor (RT) effects, (b) Bell–Plesset or geometry/curvature effects, (c) the effects of impulsively accelerating the interface, (d) compressibility effects, (e) finite thickness effects, and (f) viscous effects. Henceforth, the present instability studied is more appropriately referred to as non-classical RT instability to distinguish it from classical RT instability. The linear regime is examined and the development of the viscous three-dimensional perturbations is obtained by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the viscous effects on the growth of the disturbances for various conditions. The inviscid analysis does not show the existence of a maximum amplification rate. The present viscous analysis, however, shows that the growth rate increases with increasing the wave number, but there exists a peak wavenumber beyond which the growth rate decreases with increasing the wave number due to viscous effects.  相似文献   

16.
Upon swelling in a solvent, a thin hydrogel layer on a rigid substrate may become unstable, developing various surface patterns. Recent experimental studies have explored the possibilities to generate controllable surface patterns by chemically modifying the molecular structures of the hydrogel near the surface. In this paper, we present a theoretical stability analysis for swelling of hydrogel layers with material properties varying in the thickness direction. As a specialization of the general procedure, hydrogel bilayers with different combinations of the material properties are examined in details. For a soft-on-hard bilayer, the onset of surface instability is determined by the short-wave limit, similar to a homogeneous layer. In contrast, for a hard-on-soft bilayer, a long-wave mode with a finite wavelength emerges as the critical mode at the onset of surface instability, similar to wrinkling of an elastic thin film on a compliant substrate, and the critical swelling ratio is much lower than that for a homogeneous hydrogel layer. A smooth transition of the critical mode is predicted as the volume fraction of the top layer changes, linking surface instability of a homogeneous layer to thin film wrinkling as two limiting cases. The results from the present study suggest that both the critical condition and the instability mode depend sensitively on the variation of the material properties in the thickness direction of the hydrogel layer.  相似文献   

17.
Indentation models for thin layer-substrate geometry with an interphase have been developed. The interphase can be modeled either as a nonhomogeneous layer or as a homogeneous layer. Between the two models of the interphase, contact depth and critical interfacial stresses are compared to find the effect of indentation area, film and substrate Young’s moduli, and the interphase and film thicknesses. Although contact depth is found not to be sensitive to the type of interphase model used, critical interfacial stresses are significantly different (up to 15%) for film to substrate elastic Young’s moduli ratios of more than 25. A formal sensitivity analysis based on design of experiments shows that on critical interfacial stresses, interphase to film thickness ratio and film to substrate Young’s moduli ratio has the most impact, while type of elastic moduli variation in the interphase and indentor width to film thickness ratio has the least impact.  相似文献   

18.
19.
The effect of the Coriolis force on the evolution of a thin film of Newtonian fluid on a rotating disk is investigated. The thin-film approximation is made in which inertia terms in the Navier–Stokes equation are neglected. This requires that the thickness of the thin film be less than the thickness of the Ekman boundary layer in a rotating fluid of the same kinematic viscosity. A new first-order quasi-linear partial differential equation for the thickness of the thin film, which describes viscous, centrifugal and Coriolis-force effects, is derived. It extends an equation due to Emslie et al. [J. Appl. Phys. 29, 858 (1958)] which was obtained neglecting the Coriolis force. The problem is formulated as a Cauchy initial-value problem. As time increases the surface profile flattens and, if the initial profile is sufficiently negative, it develops a breaking wave. Numerical solutions of the new equation, obtained by integrating along its characteristic curves, are compared with analytical solutions of the equation of Emslie et al. to determine the effect of the Coriolis force on the surface flattening, the wave breaking and the streamlines when inertia terms are neglected.  相似文献   

20.
The temporal instability of parallel viscous two-phase mixing layers is extended to current-fluid mud by considering a composite error function velocity profile. The influence of viscosity ratio, Reynolds number, and Froude number on the instability of the system are discussed and a new phenomenon never discussed is investigated based on our numerical results. It is shown that viscosity can enlarge the unstable wave number range, cause new instability modes, and certainly reduce the growth rate of Kelvin—Helmholtz (K—H) instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号