首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amine-functionalized porous sol–gel silica film was shown to be an effective platform to immobilize small anionic redox mediators of high solubility on solid electrodes by electrostatic interaction. The highly soluble mediator hexacyanoferrate was used as a model. The film was grown and firmly anchored on a gold electrode surface via thiol groups of a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane. Film growth and thickness were controlled by electrochemical modulation of pH at the electrode/solution interface in a sol of a hydrolyzed solution of tetraethoxysilane and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane by the application of a negative potential to the electrode. Protonation of the amine groups made the amine-functionalized surface useful to immobilize hexacyanoferrate on gold. Thus, the immobilization is pH dependent, being highly effective in strongly acidic medium. Cyclic voltammetry and scanning electron microscopy were used to characterize the film and to optimize the experimental conditions. The stability of the film was demonstrated by applying the catalytic properties of the hexacyanoferrate containing surface for nitrite sensing using a flow injection analysis (FIA) system. Under the optimized conditions, the sensor exhibited high sensitivity, low detection limit, easy handling, and stability with a linear range from 1.0 to 40.0?µmol?L?1 and a detection limit of 0.53?µmol?L?1 based on a signal-to-noise ratio of 3. The sensor was successfully applied to nitrite determination in water samples using FIA with excellent recoveries.  相似文献   

2.
《Electroanalysis》2005,17(19):1716-1726
Well‐adherent amine‐functionalized porous silica films have been deposited on gold electrodes by combining the self‐assembly technology, the sol–gel process, and the electrochemical modulation of pH at the electrode/solution interface. A partial self‐assembled monolayer of mercaptopropyl‐trimethoxysilane (MPTMS) was first formed on disposable gold electrodes from recordable CDs (Au‐CDtrodes). The so pretreated MPTMS‐Au‐CDtrodes were immersed in a stable sol solution (pH 3) containing (3‐aminopropyl)‐triethoxysilane (APTES) and tetraethoxysilane (TEOS). Polycondensation of the APTES and TEOS precursors was then achieved by applying a negative potential for a given period of time to generate a local pH increase at the electrode/solution interface and promote the deposition of the amine functionalized silica film adhering well to the electrode surface owing to the MPTMS monolayer acting somewhat as a “molecular glue”. Various parameters affecting the electrodeposition process have been studied and the film permeability to redox probes in solution was characterized by cyclic voltammetry. The amine‐functionalized silica film electrodes were then applied to the preconcentration of copper(II) species prior to their electrochemical detection by anodic stripping differential pulse voltammetry. Getting high sensitivity has however required the application of an electrochemical pre‐activation step as the majority of the organo‐functional groups were in the form of ammonium moieties (because the film was prepared from an acidic sol). This was achieved by applying a sufficiently negative potential to the electrode surface to reduce protons and increase consequently the amine‐to‐ammonium ratio within the film and, thus, the efficiency of the precocentration process. The resulting device was then optimized for copper(II) determination in hydroalcoholic medium, giving rise to a linear response in the 0.1–10 μM concentration range.  相似文献   

3.
Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by ‘directed assembly’ methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)63+ is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)63+ complex to be reduced to Ru(NH3)62+ which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures.  相似文献   

4.
A new one-step method is reported for the deposition of hybrid mesoporous thin films on various electrode surfaces (gold, platinum, glassy carbon). Deposition was achieved by spin-coating sol–gel mixtures in the presence of a surfactant template to get mesostructured thin layers on the various conducting substrates. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and/or organosilane precursors on the electrode surface. Extraction of the surfactant from the ordered mesoporous films led to a large increase of mass transport rates into the materials and imparted high accessibility to the organic moieties in case of functionalized mesoporous overlayers. The electrochemical properties of the film-modified electrodes have been studied by cyclic voltammetry (CV), and also via the chemical accumulation of mercury ions prior to their stripping analysis by differential pulse voltammetry (i.e. for thiol-functionalized thin films). Some evidences to support the formation of self-assembled monolayers (SAMs) on electrodes, have been also discussed. The formation of well-adhering mesoporous thin films on solid electrode surfaces is expected to have a high impact on the development of new electrochemical sensors.  相似文献   

5.
The determination of prilocain, used to manage tonic-clonic seizures, has been carried out at micro gold electrode (Au UME) using continuous fast Fourier transform square wave voltammetry. The Au UME electrode exhibited an effective response towards prilocaine adsorption. The peak current was also found to be significantly increased. The determination was carried out in phosphate containing electrolyte in the pH of 2.0 and a well-defined change on the peak current were noticed. The peak current was found to be linearly dependent on concentration of prilocain in the concentration range 5.0 × 10−7–1.0 × 10−11 M with a detection limit of 5.0 × 10−12 M. This paper describes development of a new analysis system to determine of prilocain by a novel square wave voltammetry method to perform a very sensitive method. The method used for determination of prilocain by measuring the changes in admittance voltammogram of a gold ultramicroelectrode (in 0.05 M H3PO4 solution) caused by adsorption of the prilocain on the electrode surface. Variation of admittance in the detection process is created by inhibition of oxidation reaction of the electrode surface, by adsorbed of prilocain. Furthermore, signal-to-noise ratio has significantly increased by application of discrete Fast Fourier Transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Also in this work some parameters such as SW frequency, eluent pH, and accumulation time were optimized. The relative standard deviation at concentration 5.0 × 10−8 M is 5.8% for 5 reported measurements.  相似文献   

6.
Stable electroactive iron tetra(o-aminophenyl)porphyrin (FeTAPP) films are prepared by electropolymerization from aqueous solution by cycling the electrode potential between −0.4 and 1.0 V vs Ag/AgCl at 0.1 V s−1. The cyclic voltammetric response indicates that polymerization takes place after the oxidation of amino groups, and the films could be produced on glassy carbon (GC) and gold electrodes. The film growth of poly(FeTAPP) was monitored by using cyclic voltammetry and electrochemical quartz crystal microbalance. The cyclic voltammetric features of Fe(III)/Fe(II) redox couple in the film resembles that of surface confined redox species. The electrochemical response of the modified electrode was found to be dependent on the pH of the contacting solution with a negative shift of 57 mV/pH. The electrocatalytic behavior of poly(FeTAPP) film-modified electrode was investigated towards reduction of hydrogen peroxide, molecular oxygen, and chloroacetic acids (mono-, di-, and tri-). The reduction of hydrogen peroxide, molecular oxygen, and dichloroacetic acid occurred at less negative potential on poly(FeTAPP) film compared to bare GC electrode. Particularly, the overpotential of hydrogen peroxide was reduced substantially. The O2 reduction proceeds through direct four-electron reduction mechanism.  相似文献   

7.
《Electroanalysis》2004,16(9):757-764
Colloidal Au particles have been deposited on the gold electrode through layer‐by‐layer self‐assembly using cysteamine as cross‐linkers. Self‐assembly of colloidal Au on the gold electrode resulted in an easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)6]4?/[Fe(CN)6]3? on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37 °C for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based on this immobilization method exhibits a large linear dynamic range, from 5–400 μg/L for detection of Human IgG. The detection limit is about 0.5 μg/L.  相似文献   

8.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

9.
Electrochemical characterization of gold cysteamine self-assembled monolayer, in situ functionalized with ethylenediaminetetraacetic acid (Au-CA-EDTA SAM), is described by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Osteryoung square wave voltammetry (OSWV). The results obtained by EIS and CV, in the presence of [Fe(CN)6]3−/4− redox probe, show that EDTA is successfully grafted to the surface of Au-CA electrode. Reproducible and reversible variation of the Rct and ΔEp as a function of solution pH show that Au-CA-EDTA SAM is stable in a wide range of pH and potentials. Accumulation of the Pb2+ and Cu2+ ions on the Au-CA-EDTA SAM electrode is investigated using faradaic currents or impedimetric effects measured by OSWV and EIS, respectively. These results reveal the presence of active complexing functional groups of EDTA on the surface, and thus, the formation of Au-CA-EDTA SAM electrode. The new sensor responds to the Pb2+ and Cu2+ separately and simultaneously in a wide linear range of concentrations.  相似文献   

10.
In this study, poly (pyrrole-co-o-anisidine)/chitosan composite (Cs) films were prepared by cyclic voltammetry technique on platinum electrode using different pyrrole and o-anisidine mole ratios. Immobilization process was accomplished in CoII-(N,N′-bis(salicylidene)-2-aminobenzylamine)(CoL) dissolved 0.15 M acetonitrile-LiClO4 solution by cyclic voltammetry technique at 0.2–2.0 V potential range. Three electrode methods were applied in all electrochemical studies. After immobilization process, the characterizations of the electro catalytic surfaces (Cs−CoL−Pt) were carried out by cyclic voltammetry and SEM images. The SEM images clearly indicated that the [CoL] complex is immobilized onto composite films. The electrocatalytic activity of the modified electrodes on the catechol was investigated using buffer solutions of different pH values. The results of catalytic studies revealed that, pH=10 buffer solution was the optimal solution and 1 : 1 Cs−CoL−Pt electrode was the best electrode for catechol oxidation. In square wave voltammetry measurements using this electrode, two linear working ranges were determined. The linear response ranges for catechol determination were found as 3.0 μM–6.0 μM and 16 μM–80 μM for the first and the second linear working ranges, respectively, with 1.1 μM detection limit.  相似文献   

11.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

12.
Dip coated vacuum annealed zinc tin oxide thin films on soda lime silica glass have been deposited from the precursor sols containing zinc acetate dihydrate and tin (IV) chloride pentahydrate (Zn:Sn = 67:33, atomic ratio in percentage) in 2-methoxy ethanol by varying sol pH (0.85–5.5). Crystallinity, morphology, optical and photocatalytic properties of the films strongly depend on sol pH. Measurement of grazing incidence X-ray diffraction confirms the presence of hexagonal nano ZnO in the films derived from the sols of pH < 5.5. Film crystallinity deteriorates on increasing sol pH and the film deposited from the sol of pH 5.5 shows XRD amorphous but the selected area diffraction pattern and HRTEM image evidence the presence of nano Zn2SnO4 (size, 5–6 nm). Direct band gap energy of films increases on increasing sol pH. To visualize the film surface microstructure, FESEM study has been done and a rod-like surface feature is revealed in the film deposited from the sol of pH 2.85. A dependence of precursor sol pH on the photocatalytic activity of films towards degradation of Rhodamine 6G dye under UV (254 nm) irradiation is found and the highest decomposition rate constant, ‘k’ value is obtained from the film prepared from the sol of pH 5.5. The presence of zinc deficient nano Zn2SnO4 in the film may consider for generating the highest ‘k’ value. We also measure gelling time, viscosity of sols as well as UV and FTIR studies on the films and propose chemical reactions.  相似文献   

13.
A series of novel organic ligands with dipicolylamine and disulfide groups connected by polymethylene, alkylaryl, alkoxyaryl, or alkoxycarbonyl linker was synthesized. The electrochemical study by cyclic voltammetry was carried out for two synthesized ligands, and the formation of the complexes with Cu(MeCN)ClO4 in the solution or on the gold electrode surface was established. The complex of CuI with 1,24-bis[N,N-bis(2-pyridylmethyl)-glycinoyloxy]-12,13-dithiatetracosane chemisorbed on the Au electrode is capable of binding molecular oxygen from solution.  相似文献   

14.
A room temperature ionic liquid (RTIL), 1-ethyl-3-methyl imidazolium tetrafluoroborate ([EMIm][BF4]), was successfully immobilized on the surface of a basal plane graphite (BPG) electrode through silica sol and Nafion film to form a sol/RTIL/Nafion modified electrode. Direct electrochemistry of hemoglobin (Hb), which was adsorbed on the surface of sol/RTIL/Nafion modified electrode, was investigated. The results from cyclic voltammetry (CV) suggested that Hb could be tightly adsorbed on the surface of the electrode. A couple of well-defined and quasi-reversible CV peaks of Hb can be observed in a phosphate buffer solution (pH 7.0). RTIL shows an obvious promotion for the direct electro-transfer between Hb and electrode. Hb adsorbed on electrode surface exhibits an obvious electrocatalytic activity for the reduction of oxygen O2. The reduction peak currents were proportional linearly to the concentration of oxygen in the range 0.14–1.82 μM. A third generation biosensor based on RTIL can be constructed for the determination of O2.  相似文献   

15.
Polythymine oligonucleotide (PTO)‐modified gold electrode (PTO/Au) was developed for selective and sensitive Hg2+ detection in aqueous solutions. This modified electrode was prepared by self‐assembly of thiolated polythymine oligonucleotide (5′‐SH‐T15‐3′) on the gold electrode via Au? S bonds, and then the surface was passivated with 1‐mercaptohexanol solution. The proposed electrode utilizes the specific binding interactions between Hg2+ and thymine to selectively capture Hg2+, thereby reducing the interference from coexistent ions. After exchanging the medium, electrochemical reduction at ?0.2 V for 60 s, voltammetric determination was performed by differential pulse voltammetry using 10 mM HEPES; pH 7.2, 1 M NaClO4 as supporting electrolyte. This electrode showed increasing voltammetric response in the range of 0.21 nM Hg2+, with a relative standard deviation of 5.32% and a practical detection limit of 60 pM. Compared with the conventional stripping approach, the modified electrode exhibits good sensitivity and selectivity, and is expected to be a new type of green electrode.  相似文献   

16.
The surface of a gold disk electrode, for the first time, was modified with a self-assembled monolayer of a synthesized compound, ethyl [(methythio)carbonothioyl] glycinate (ECTG), for construction of an electrode sensitive to riboflavin (vitamin B2). The electrochemical properties of the monolayer assembled on the gold disk were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the voltammetric peak currents resulting from vitamin B2 (VB2) species were linear for VB2 concentrations in the range from 10–6 to 10–2 M. The effect of pH, type of buffer solution and scan rate on the response of the modified electrode was studied. The constructed electrochemical sensor responses very well to VB2 in the presence of most common vitamins. Finally, the performance of the Au–ECTG modified electrode was successfully tested for electrochemical detection of VB2 in a pharmaceutical sample.  相似文献   

17.
A novel NH2+ ion implantation‐modified indium tin oxide (NH2/ITO) electrode was prepared. Acid‐pretreated, negatively charged MWNTs were firstly modified on the surface of NH2+ ion implantation electrode, then, positively charged Mb was adsorbed onto MWNTs films by electrostatic interaction. The assembly of MWNTs and Mb was characterized with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Mb showed a couple of quasireversible cyclic voltammetry peaks in pH 7.0 phosphate buffer solution (PBS). The apparent surface concentration of Mb at the electrode surface was 1.06×10?9 mol cm?2. The Mb/MWNTs/NH2/ITO electrode also gave an improved electrocatalytic activity towards the reduction of hydrogen peroxide. The catalysis currents increased linearly to the H2O2 concentration in a wide range from 9×10?7 to 9.2×10?5 M with a correlation coefficient of 0.999. The detection limit was 9.0×10?7 M. The experiment results demonstrated that the modified electrode provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

18.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

19.
Cyclic voltammetry and electrochemical impedance spec-troscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers(SAMs).A carboxylic acid-terminated thiol,such as thioctic acid(1,2-dithiolane-3-pentanoic acid),was self-assembled on gold electrodes.Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63-as a probe.The surface pka of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6 ±0.1 and 5.8±0.1,respectively.The method is compared with other methods of monolayer pKa measurement.  相似文献   

20.
Yang G  Shen Y  Wang M  Chen H  Liu B  Dong S 《Talanta》2006,68(3):741-747
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)63− in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pKa values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号