首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a novel method was presented to improve the cycle performance of the spinel LiMn2O4 This method is quite different from the traditional way of coating LiMn2O4 particle itself with inorganic and organic compounds. First we covered the current collector with the mixture of LiMn2O4 particle, conductive agents and binders, and then deposited an aluminum film onto it by means of vacuum evaporation. The pure electrode and the modified electrode were investigated using a combination of scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge–discharge tests. The enhancement of the capacity retention of modified electrode is significant, maintaining 93.5% of the maximum capacity after 200 cycles at charge–discharge rate of C/2, while pure electrode only 63.7%. It was found that the improvement of cycling performance is greatly ascribed to the good electrical conductivity of aluminum film deposited on the surface of spinel LiMn2O4.  相似文献   

2.
3.
The Y2O3 nano-film is coated on the surface of the spherical spinel LiMn2O4 by precipitation method and subsequent heat treatment at 550 °C for 5 h in air. The structure and performance of the bare LiMn2O4 and Y2O3-coated LiMn2O4 are characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis X-ray spectroscopy, galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. It has been found that the addition of Y2O3 does not change the bulk structure of LiMn2O4, and the thickness of the Y2O3 coating layer is approximate to 3.0 nm. The 1 wt% Y2O3-coated LiMn2O4 electrode reveals excellent cycling performance with 80.3 % capacity retention after 500 cycles at 1 C at 25 °C. When cycling at elevated temperature 55 °C, the as-prepared sample still shows 76.7 % capacity retention after 500 cycles. These remarkable improvements indicate that thin Y2O3 coating on the surface of LiMn2O4 is an effective way to improve the electrochemistry performance. Besides, the suppression of Mn dissolution into the electrolyte via the Y2O3 coating layer can be accounted for the improved performances.  相似文献   

4.
LiMn2O4 spinel nanorods prepared from nanowire MnO2 templates were capped with polyvinyl pyrrolidone (PVP) and coated with ZrC2O4 precursors in aqueous solution. Upon annealing at 600 °C in air, an amorphous ZrO2 nanoscale coating layer was obtained on the spinel nanoparticles with a particle size of <100 nm that formed from the splitting of the original spinel nanorods. The electrochemical cycling results clearly showed that nanoscale ZrO2 coating significantly improved the rate capability and cycle life at 65 °C in spite of very high surface area of the spinel nanoparticles.  相似文献   

5.
Journal of Solid State Electrochemistry - Li2MnO3 coated spinel lithium manganese oxide (LiMn2O4) materials have been successfully synthesized by a sol-gel method. Scanning electron microscopy...  相似文献   

6.
尖晶石LiMn_2O_4的表面改性研究   总被引:10,自引:0,他引:10  
采用溶胶_凝胶法合成尖晶石LiMn2 O4 ,并以LiCoO2 对其进行包覆 ,用XRD、SEM、EPMA等方法对修饰的尖晶石结构和性能进行研究 .结果表明 ,经包覆的LiMn2 O4 在 70 0℃焙烧 10h所得的晶粒是表层富含Co的立方尖晶石 ,而且晶粒中Co3+的含量呈现出从表到里递减的梯度分布 .以该材料作锂离子电池正极 ,虽初始容量稍有降低 ,但能有效地降低Mn2 +在电解质中的溶解 ,而且对Jahn_Teller效应有一定的抑制作用 ,包覆的LiMn2 O4 尖晶石正极材料比未包覆的有更好的循环性能  相似文献   

7.
Pure-phase and well-crystallized spinel LiMn2O4 powders were successfully synthesized by a simple rheological phase method. The thermal behavior and structure properties of the powders prepared by the rheological phase method compared with the solid-state reaction were investigated by thermogravimetry, powder X-ray diffraction , scanning electron microscopy and transmission electron microscopy. According to the results of the electrochemical tests, it is obvious that the sample resulting from the rheological phase method shows higher discharge capacity and better cycling stability than one formed in the solid-state reaction. The cyclic voltammogram and columbic efficiency curves also confirm that the product by the rheological phase method has a good cycling performance due to its fine cubic spinel structure and morphology.  相似文献   

8.
The spinel LiMn2O4 cathode material has been considered as one of the most potential cathode active materials for rechargeable lithium ion batteries. The sodium-doped LiMn2O4 is synthesized by solid-state reaction. The X-ray diffraction analysis reveals that the Li1?x Na x Mn2O4 (0?≤?x?≤?0.01) exhibits a single phase with cubic spinel structure. The particles of the doped samples exhibit better crystallinity and uniform distribution. The diffusion coefficient of the Li0.99Na0.01Mn2O4 sample is 2.45?×?10?10 cm?2 s?1 and 3.74?×?10?10 cm?2 s?1, which is much higher than that of the undoped spinel LiMn2O4 sample, indicating the Na+-ion doping is favorable to lithium ion migration in the spinel structure. The galvanostatic charge–discharge results show that the Na+-ion doping could improve cycling performance and rate capability, which is mainly due to the higher ion diffusion coefficient and more stable spinel structure.  相似文献   

9.
Ti-doped spinel LiMn2O4 is synthesized by solid-state reaction. The X-ray photoelectron spectroscopy and X-ray diffraction analysis indicate that the structure of the doped sample is Li( Mn3 + Mn1 - x 4 + Tix4 + )O4 {\hbox{Li}}\left( {{\hbox{M}}{{\hbox{n}}^{3 + }}{\hbox{Mn}}_{1 - x\,}^{4 + }{\hbox{Ti}}_x^{4 + }} \right){\hbox{O}}{}_4 . The first principle-based calculation shows that the lattice energy increases as Ti doping content increases, which indicates that Ti doping reinforces the stability of the spinel structure. The galvanostatic charge–discharge results show that the doped sample LiMn1.97Ti0.03O4 exhibits maximum discharge capacity of 135.7 mAh g−1 (C/2 rate). Moreover, after 70 cycles, the capacity retention of LiMn1.97Ti0.03O4 is 95.0% while the undoped sample LiMn2O4 shows only 84.6% retention under the same condition. Additionally, as charge–discharge rate increases to 12C, the doped sample delivers the capacity of 107 mAh g−1, which is much higher than that of the undoped sample of only 82 mAh g−1. The significantly enhanced capacity retention and rate capability are attributed to the more stable spinel structure, higher ion diffusion coefficient, and lower charge transfer resistance of the Ti-doped spinel.  相似文献   

10.
Spinel LiMn2O4 cathode materials were coated with 1.0, 3.0 and 5.0?wt.% of MgF2 by precipitation, followed by heat treatment at 400?°C for 5?h in air. The effects of MgF2 coating on the structural and electrochemical properties of LiMn2O4 cathodes were investigated using XRD, SEM, and electrochemical tests. XRD and SEM results show that no significant bulk structural differences are observed between the coated and pristine LiMn2O4. The charge–discharge tests show that the discharge capacity of LiMn2O4 decreases slightly, but the cyclability of LiMn2O4 is clearly improved when the amount of the MgF2 coated was increased to 3.0?wt.%. The 3.0?wt.% MgF2-coated LiMn2O4 exhibits capacity retention of 80.1 and 76.7 % after 100 cycles at room temperature (25?°C) and elevated temperature (55?°C) at a rate of 1?C, respectively, much higher than those of the bare LiMn2O4 (70.1 and 61.6 %). The improvement of electrochemical performance is attributed to the suppression of Mn dissolution into the electrolyte via the MgF2 coating layer.  相似文献   

11.
We reported previously the superiority of electrochemical characteristics of the mechanical mixtures of micrometer LiMn2O4 spinel with multiwall carbon nanotubes (MCNT) over those of spinel compositions with natural graphite in the prototypes of the Li-ion batteries. In the presented work, we extended the investigation of the kinetic and interfacial characteristics of the spinel in the redox reaction with the Li ion. Slow-rate scan cyclic voltammetry and impedance spectroscopy were used. Carbon electroconductive fillers, their nature, and particle sizes play the key role in the efficiency of the electrochemical transformation of spinel in Li-ion batteries. Electrodes based on the composition of the spinel and MCNT show a good cycling stability and efficiency at the discharge rate of 2C. Chemical diffusion coefficients of Li ion, which were determined in spinel composite with MCNT and graphite near potentials of peak activity in deintercalation/intercalation processes, change within one order of 10?12 cm2 s?1. The value of this chemical diffusion coefficient for the composition of the spinel with MCNT and with graphite change within one order of 10?12 cm2 s?1. The data of the impedance spectroscopy shows that the resistance of surface films on the spinel (R s) is low and does not considerably differ from R s in composites of the spinel with MCNT and graphite. The investigation shows that the resistance of charge transport (R ct) through the boundary of surface film/spinel composite is dependent on the conductive filler. Value of R ct in spinel electrode decreases by the factor of thousand in the presence of carbon filler. Exchange current of spinel electrode increases from the order of 10?7 to 10?4 A cm?2 under the influence of MCNT. At the potentials of maximum activity in deintercalation processes, exchange current of spinel composite electrode with MCNT is 2.2–3.0 times more than one of the composite with graphite. Determining role of the resistance of charge transport in electrode processes of spinel is established. The value of R ct is dependent on the resistance in contacts between spinel particles and also between particles and current collectors. Contact resistance decreases under the influence of MCNT with more efficiency than under the influence of graphite EUZ-M because of small the size of its particles with high surface area of the MCNT.  相似文献   

12.
LiMn2O4 powder for lithium-ion batteries was prepared by a precipitation method, and the effects of calcination temperature on the physical properties and electrochemical performance of the samples were investigated by various methods. The results of X-ray diffraction (XRD) showed that the lattice parameter (a) and the unit cell volume (v) decrease with the increasing calcination temperature, and the LiMn2O4 sample calcined at 750°C has smaller particle size and higher crystallinity than other samples. The results of the electrochemical experiments showed that the sample calcined at 750°C has larger peak currents, higher initial capacity, and better cycling capability, because of its lower charge-transfer resistance and larger diffusion coefficient of Li+ ions than those of other samples.  相似文献   

13.
LiMn2O4 microcubes with a size of 10–15 μm have been synthesized by a facile self-templating route starting from cubic MnCO3. The LiMn2O4 microcubes exhibit a hierarchical structure, where the cubes are stacked from parallel plates with a thickness of 200 nm, where each plate is composed of interconnected nanoparticles with a size of around 200 nm. The cubic LiMn2O4 shows excellent rate capability and high-rate cycling stability. At 10 C, it can yield a discharge capacity of 108 mAh g?1. A discharge capacity of 88 mAh g?1 can be retained after 100 cycles at 10 C. The excellent electrochemical performance makes it a promising cathode for high-power Li-ion batteries.  相似文献   

14.
合成条件对尖晶石LiMn_2O_4的电化学性能的影响   总被引:6,自引:0,他引:6  
徐俊峰  江志裕 《电化学》2001,7(4):421-426
以Li2 CO3、LiOH、LiNO3以及电解MnO2 (EMD)作原料 ,用固相反应法合成了尖晶石LiMn2 O4 .结果表明 ,反应物种类及合成条件对LiMn2 O4 的电化学性质有很大的影响 .其中以LiNO3和EMD为合成原料制得的LiMn2 O4 性能最佳 .其制备条件分两步 :先在 2 80℃加热 6h ,使熔融的LiNO3渗入EMD微孔 ,然后在 75 0℃下焙烧合成  相似文献   

15.
A novel process is proposed for synthesis of spinel LiMn2O4 with spherical particles from the inexpensive materials MnSO4, NH4HCO3, and NH3H2O. The successful preparation started with carefully controlled crystallization of MnCO3, leading to particles of spherical shape and high tap density. Thermal decomposition of MnCO3 was investigated by both DTA and TG analysis and XRD analysis of products. A precursor of product, spherical Mn2O3, was then obtained by heating MnCO3. A mixture of Mn2O3 and Li2CO3 was then sintered to produce LiMn2O4 with retention of spherical particle shape. It was found that if lithium was in stoichiometric excess of 5% in the calcination of spinel LiMn2O4, the product had the largest initial specific capacity. In this way spherical particles of spinel LiMn2O4 were of excellent fluidity and dispersivity, and had a tap density as high as 1.9 g cm–3 and an initial discharge capacity reaching 125 mAh g–1. When surface-doped with cobalt in a 0.01 Co/Mn mole ratio, although the initial discharge capacity decreased to 118 mAh g–1, the 100th cycle capacity retention reached 92.4% at 25°C. Even at 55°C the initial discharge capacity reached 113 mAh g–1 and the 50th cycle capacity retention was in excess of 83.8%.  相似文献   

16.
Through sol-gel processing and electrospinning technique, extrathin fibers of poly(vinyl alcohol) (PVA)/lithium chloride/manganese acetate composite fibers were prepared. After calcination of the above precursor fibers at 600 degrees C, the spinel lithium manganese oxide (LiMn2O4) nanofibers, with a diameter of 100-200 nm, were successfully obtained. The fibers were investigated by TG-DTA, XRD, FT-IR, and SEM, respectively. The results showed that the crystalline phase and morphology of the fibers were largely influenced by the calcination temperature.  相似文献   

17.
LiMn2O4 thin-film electrodes were prepared by the sol?Cgel method combined with oxygen-plasma irradiation. Oxygen plasma with a power of 10 or 90?W was irradiated to the precursor thin film prepared from lithium acetate, manganese acetate tetrahydrate and polyvinylpyrrolidone on a Pt plate, and then it was fired at 723 or 973?K. X-ray diffraction and Raman measurements indicated that oxygen-plasma irradiation was effective to increase the crystallinity of the resulting LiMn2O4. Atomic force microscope observation showed that the particle size of LiMn2O4 in the resulting thin-film electrode was decreased and homogeneous distribution of LiMn2O4 particles was achieved. Oxidation of the electrolyte at higher potentials was suppressed and capacity retention at 328?K was dramatically improved for the LiMn2O4 thin-film electrode obtained at 973?K. The improved electrochemical stability is ascribed to the elimination of organic materials from precursor by oxygen-plasma irradiation.  相似文献   

18.
Journal of Solid State Electrochemistry - LiNi0.8Co0.1Mn0.1O2 (NCM811) has a high potential for using as the cathode material for lithium–ion batteries (LIBs) for electric vehicles owing to...  相似文献   

19.
Spinel LiMn2O4 has already become an attractive cathode material for rechargeable lithium-ion battery. Compared with other layered compounds LiCoO2 and LiNiO2,LiMn2O4 offers several advantages:inexpensive, nontoxic, abundant and easy to prepare. These characteristics induce many researchers to study it to make it commercialized.  相似文献   

20.
Wei  Qiliang  Wang  Xianyou  Yang  Xiukang  Shu  Hongbo  Ju  Bowei  Hu  Benan  Song  Yunfeng 《Journal of Solid State Electrochemistry》2012,16(11):3651-3659
Journal of Solid State Electrochemistry - The spinel LiMn2O4 samples for lithium-ion battery have been synthesized through one-step solid-state method using four different polymorphs of MnO2, e.g.,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号