首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the 3D thermoelasticity theory, the thermoelastic analysis of laminated cylindrical panels with finite length and functionally graded (FG) layers subjected to three-dimensional (3D) thermal loading are presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The variations of the field variables across the panel thickness are accurately modeled by using a layerwise differential quadrature (DQ) approach. After validating the approach, as an important application, two common types of FG sandwich cylindrical panels, namely, the sandwich panels with FG face sheets and homogeneous core and the sandwich panels with homogeneous face sheets and FG core are analyzed. The effect of micromechanical modeling of the material properties on the thermoelastic behavior of the panels is studied by comparing the results obtained using the rule of mixture and Mori–Tanaka scheme. The comparison studies reveal that the difference between the results of the two micromechanical models is very small and can be neglected. Then, the effects of different geometrical parameters, material graded index and also the temperature dependence of the material properties on the thermoelastic behavior of the FG sandwich cylindrical panels are carried out.  相似文献   

2.
This paper deals with the non-linear response of sandwich curved panels exposed to thermomechanical loadings. The mechanical loads consist of compressive/tensile edge loads, and a lateral pressure while the temperature field is assumed to exhibit a linear variation through the thickness of the panel. Towards obtaining the equations governing the postbuckling response, the Extended Galerkin’s Method is used. The numerical illustrations concern doubly curved, circular cylindrical and as a special case, flat panels, all the edges being simply supported. Moveable and immoveable tangential boundary conditions in the directions normal to the edges are considered and their implications upon the thermomechanical load-carrying capacity are emphasized. Effects of the radii of curvature and of initial geometric imperfections on the load-carrying capacity of sandwich panels are also considered and their influence upon the intensity of the snap-through buckling are discussed. It is shown that in special cases involving the thermomechanical loading and initial geometric imperfection, the snap-through phenomenon can occur also in the case of flat sandwich panels.  相似文献   

3.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

4.
This research investigates three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced (CGFR) cylindrical panels resting on Pasternak foundations by using generalized power-law distribution. The functionally graded orthotropic panel is simply supported at the edges, and it is assumed to have an arbitrary variation of matrix volume fraction in the radial direction. A four-parameter power-law distribution presented in literature is proposed. Symmetric and asymmetric volume fraction profiles are presented. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are solved by generalized differential quadrature method, and natural frequency is obtained. The fast rate of convergence of the method is demonstrated, and to validate the results, comparisons are made with the available solutions for functionally graded isotropic shells with/without elastic foundations. The effect of the elastic foundation stiffness parameters and various geometrical parameters on the vibration behavior of the CGFR cylindrical panels is investigated. This work mainly contributes to illustrate the influence of the four parameters of power-law distributions on the vibration behavior of functionally graded orthotropic cylindrical panels resting on elastic foundation. This paper is also supposed to present useful results for continuous grading of matrix volume fraction in the thickness direction of a cylindrical panel on elastic foundation and comparison with similar discrete laminated composite cylindrical panel.  相似文献   

5.
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.  相似文献   

6.
The problem of flutter of viscoelastic rectangular plates and cylindrical panels with concentrated masses is studied in a geometrically nonlinear formulation. In the equation of motion of the plate and panel, the effect of concentrated masses is accounted for using the δ-Dirac function. The problem is reduced to a system of nonlinear ordinary integrodifferential equations by using the Bubnov-Galerkin method. The resulting system with a weakly singular Koltunov-Rzhanitsyn kernel is solved by employing a numerical method based on quadrature formulas. The behavior of viscoelastic rectangular plates and cylindrical panels is studied and the critical flow velocities are determined for real composite materials over wide ranges of physicomechanical and geometrical parameters.  相似文献   

7.
In this paper, three-dimensional free vibrations analysis of a four-parameter functionally graded fiber orientation cylindrical panel is presented. The panel is simply supported at the edges and assumed to have an arbitrary variation of fiber orientation in the radial direction. A generalization of the power-law distribution presented in literature is proposed. Symmetric and asymmetric fiber orientation profiles are studied in this paper. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain the natural frequency. The main contribution of this work is to illustrate the influence of the power-law exponent, of the power-law distribution choice and of the choice of the four parameters on the natural frequencies of continuous grading fiber orientation cylindrical panels. Numerical results are presented for a cylindrical panel with arbitrary variation of fiber orientation in the shell’s thickness and compared with discrete laminates composite panels. It is shown maximum natural frequencies will be obtained by using symmetric fiber orientation profiles.  相似文献   

8.
The primary resonance response of simply supported circular cylindrical shells is investigated using the perturbation method. Donnell's non-linear shallow-shell theory is used to derive the governing partial differential equations of motion. The Galerkin technique is then employed to transform the equations of motion into a set of temporal ordinary differential equations. Considering only the primary resonance case, the method of multiple scales is used to study the periodic solutions and their stability. The necessary and sufficient conditions for appearance of the so-called companion mode are also discussed. To this end, a range of the possible multi-mode solution is obtained for response and excitation amplitudes and also excitation frequency as a function of damping, geometry and material properties of the shell. Parametric studies are performed to illustrate the effect of different values of thickness, length and material composition on the possibility of the companion mode participation in primary resonance response.  相似文献   

9.
A layerwise theory is used to analyze analytically displacements and stresses in functionally graded composite plates in cylindrical bending subjected to thermomechanical loadings. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The non-linear strain–displacement relations in the von Kármán sense are used to study the effect of geometric non-linearity. The equilibrium equations are solved exactly and also by using a perturbation technique. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.  相似文献   

10.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

11.
The propagation of waves in a non-linear cylindrical elastic membrane is considered when one end is fixed and the other is subjected to a dynamic extension and twist. The governing equations are derived for a hyperelastic material with a general strain energy function. In order to obtain specific results the equations are specialised to deal with neo-Hookian materials and in this case we show that there are three real wave speeds in each direction along the cylinder. Numerical results are given and a limiting case considered which provides a check on these results.  相似文献   

12.
含初缺陷复合材料圆柱曲板的动力屈曲分析   总被引:1,自引:1,他引:1  
唐文勇  张圣坤 《力学季刊》1998,19(3):228-234
基于修正的一阶剪切变形理论,利用Hamilton原理导出包含横向剪切变形和转动惯量的复合材料长圆柱曲板的非线性动力方程,通过将位移和载荷展开为Fourier级数,把非线性偏微分方程组转化为二阶常微分方程组,并可由四阶Runge-Kutta方法数值求解,通过算例,讨论了有关因素对迭层复合材料圆柱曲板动力屈曲的影响。  相似文献   

13.
We consider a large deformation of a cylindrical layer. Through the process of homogenization and the theory of effective moduli this heterogeneous medium is converted to a homogeneous but anisotropic medium. On the basis of John’s semilinear material, an energy function is identified and equations of motion obtained. Using the method of characteristics the speeds of propagating linear longitudinal and non-linear shear cylindrical waves are obtained: these “p-wave” and “s-wave” do interact, contrary to the known view, of the small deformation theory.  相似文献   

14.
Internal resonances in geometrically non-linear forced vibrations of laminated circular cylindrical shells are investigated by using the Amabili?CReddy higher-order shear deformation theory. A harmonic force excitation is applied in radial direction and simply supported boundary conditions are assumed. The equations of motion are obtained by using an energy approach based on Lagrange equations that retain dissipation. Numerical results are obtained by using the pseudo-arc length continuation method and bifurcation analysis. A one-to-one-to-two internal resonance is identified, giving rise to pitchfork and Neimark?CSacher bifurcations of the non-linear response. A threshold level in the excitation has been observed in order to activate the internal resonance.  相似文献   

15.
An analytical study of slow modulation has been made of cylindrical interface between two inviscid streaming fluids, in the presence of a relaxation of electrical charges at the interface, and stressed by an axial electric field. A new technique based on the perturbation theory, to derive the non-linear evolution equations has been introduced. These equations are combined to yield a non-linear Ginzburg–Landau equation and a non-linear modified Schrödinger equation describing the evolution of wave packets. The linear analysis showed that the streaming has a destabilizing effect and the electric field has stabilizing influence associated with parameters condition involving the electric conductivity and permittivity of the fluids. While the non-linear approach indicated that the streaming may become unstable for sufficiently high velocities, with a new condition on the material properties, involving weak electric relaxation times in both fluids.  相似文献   

16.
The general theory of two-dimensional evolution equations describing transient wave propagation in non-linear continuous media is presented. The ray method is used and the two-dimensional evolution equations for plane and cylindrical wave-beams are obtained. The transient wave solutions are discussed briefly. A transformation of variables is proposed that permits the transformation of the two-dimensional evolution equation into a one-dimensional evolution equation with coordinate-dependent coefficients. A breakdown time analysis is carried out for this case. The dispersion relations for plane and cylindrical wave-beams are presented. The non-linear dispersion relation is obtained by making use of a series representation.  相似文献   

17.
A general approach, based on shearable shell theory, to predict the influence of geometric non-linearities on the natural frequencies of an elastic anisotropic laminated cylindrical shell incorporating large displacements and rotations is presented in this paper. The effects of shear deformations and rotary inertia are taken into account in the equations of motion. The hybrid finite element approach and shearable shell theory are used to determine the shape function matrix. The analytical solution is divided into two parts. In part one, the displacement functions are obtained by the exact solution of the equilibrium equations of a cylindrical shell based on shearable shell theory instead of the usually used and more arbitrary interpolating polynomials. The mass and linear stiffness matrices are derived by exact analytical integration. In part two, the modal coefficients are obtained, using Green's exact strain-displacement relations, for these displacement functions. The second- and third-order non-linear stiffness matrices are then calculated by precise analytical integration and superimposed on the linear part of equations to establish the non-linear modal equations. Comparison with available results is satisfactorily good.  相似文献   

18.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

19.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

20.
This paper studies the stability loss of the micro-fiber which is near the convex cylindrical surface. It is assumed that the material of the cylinder is viscoelastic and the fiber has the infinitesimal initial imperfection in the form of the periodical curving. Within the scope of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear field equations of the theory of viscoelasticity, a method is developed for the investigation of the evaluation of such imperfections. Using the initial imperfection criterion for stability loss, the numerical results on the critical deformation and critical times are presented and discussed. The micro-fibers are classified by the values of the ratio of a modulus of elasticity of the fiber material to that of the matrix material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号