首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.  相似文献   

2.
3.
Photodissociation of pyrimidine at 193 and 248 nm was investigated separately using vacuum ultraviolet photoionization at 118.4 and 88.6 nm and multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C4N2H4 --> C4N2H3 + H and five ring opening dissociation channels, C4N2H4 --> C3NH3 + HCN, C4N2H4 --> 2C2NH2, C4N2H4 --> CH3N + C3NH, C4N2H4 --> C4NH2 + NH2, and C4N2H4 --> CH2N + C3NH2. Only the first four channels were observed at 248 nm. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion at both wavelengths. The dissociation rates were found to be >5 x 10(7) and 1 x 10(6) s(-1) at 193 and 248 nm, respectively. Comparison with the potential energies from ab initio calculations have been made.  相似文献   

4.
Photodissociation of pyridine, 2,6-d2-pyridine, and d5-pyridine at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C5NH5 --> C5NH4 + H (10%) and five ring opening dissociation channels, C5NH5 --> C4H4 + HCN, C5NH5 --> C3H3 + C2NH2, C5NH5 --> C2H4 +C3NH, C5NH5 --> C4NH2 + CH3 (14%), and C5NH5 --> C2H2 + C3NH3. Extensive H and D atom exchanges of 2,6-d2-pyridine prior to dissociation were observed. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion. The dissociation rate of pyridine excited by 248-nm photons was too slow to be measured, and the upper limit of the dissociation rate was estimated to be 2x10(3) s(-1). Comparisons with potential energies obtained from ab initio calculations and dissociation rates obtained from the Rice-Ramsperger-Kassel-Marcus theory have been made.  相似文献   

5.
In recent years, the photodissociation dynamics of aryl halides has been a subject of intensive studies, which is closely related to the atmospheric chemistry. Here we present a review on the photochemistry of aryl halides, with emphasis on the recent progress in photodissociation dynamics at 266 nm by using photofragment translational spectroscopy. The ab initio calculations have also been employed to investigate those photodissociation processes. It has been found that the photodissociation of aryl halides at 266 nm is attributed to the nonadiabatic process via intersystem crossings from bound singlet excited state to triplet excited state and/or via internal conversion from bound singlet excited state to ground state. Also, the substitution effects in the photodissociation dynamics of aryl halides are discussed.  相似文献   

6.
Photodissociation of both fluorobenzene and d(5)-fluorobenzene at 193 nm under collision-free conditions has been studied in separate experiments using multimass ion imaging techniques. HF and DF eliminations were found to be the major dissociation channels. Small amounts of photofragments, C(6)H(4)F and C(6)D(4)F, corresponding to H and D atom eliminations were also observed. Dissociation rate and fragment translational energy distribution suggest that HF (DF) and H (D) atom elimination reactions occur in the ground electronic state. The potential energy surface obtained from ab initio calculations indicates that the four-center reaction in the ground electronic state is the major dissociation mechanism for the HF and DF eliminations. A comparison with photodissociation of benzene has been made.  相似文献   

7.
Photodissociation dynamics of phenol   总被引:1,自引:0,他引:1  
The photodissociation of phenol at 193 and 248 nm was studied using multimass ion-imaging techniques and step-scan time-resolved Fourier-transform spectroscopy. The major dissociation channels at 193 nm include cleavage of the OH bond, elimination of CO, and elimination of H(2)O. Only the former two channels are observed at 248 nm. The translational energy distribution shows that H-atom elimination occurs in both the electronically excited and ground states, but elimination of CO or H(2)O occurs in the electronic ground state. Rotationally resolved emission spectra of CO (1 相似文献   

8.
Sasaki K  Crich D 《Organic letters》2011,13(9):2256-2259
A wide variety of carboxylic acids in the form of their salts condense with aryl isocyanates at room temperature with loss of carbon dioxide to give the corresponding amides in high yield. Application of the reaction to acyl isocyanates gives unsymmetric imides. The reaction is compatible with hydroxyl groups and both Fmoc and Boc protecting groups for amines and is applicable to aliphatic, aromatic, and heteroaromatic acids.  相似文献   

9.
The direct coupling of unactivated carboxylic acids with amines can be performed in toluene 110 °C in the absence of catalyst. The use of simple zirconium catalysts at 5 mol% loading gave amide formation in as little as 4 h.  相似文献   

10.
A highly efficient copper-catalyzed approach to form amide bonds from formamides and carboxylic acids was developed.This protocol shows broad substrate scopes and high yields in the presence of 1 mol% catalyst and 4.0 equiv.formamides.  相似文献   

11.
Photodissociation of the ionized argon pentamer, Ar(5)(+), is studied using an extended diatomics-in-molecules interaction model with the inclusion of the spin-orbit coupling and various dynamical approaches. A thorough comparison with the experimental data available in the literature is presented, including photofragment abundances and their kinetic and internal energy distributions. New predictions are reported for ultraviolet photoexcitation energies, a range that has not been studied before either experimentally or theoretically.  相似文献   

12.
Photodissociation of nitrobenzene at 193, 248, and 266 nm and o-nitrotoluene at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Fragments corresponding to NO and NO(2) elimination from both nitrobenzene and o-nitrotoluene were observed. The translational energy distributions for the NO elimination channel show bimodal distributions, indicating two dissociation mechanisms involved in the dissociation process. The branching ratios between NO and NO(2) elimination channels were determined to be NONO(2)=0.32+/-0.12 (193 nm), 0.26+/-0.12 (248 nm), and 0.4+/-0.12(266 nm) for nitrobenzene and 0.42+/-0.12(193 nm) and 0.3+/-0.12 (248 nm) for o-nitrotoluene. Additional dissociation channels, O atom elimination from nitrobenzene, and OH elimination from o-nitrotoluene, were observed. New dissociation mechanisms were proposed, and the results are compared with potential energy surfaces obtained from ab initio calculations. Observed absorption bands of photodissociation are assigned by the assistance of the ab initio calculations for the relative energies of the triplet excited states and the vertical excitation energies of the singlet and triplet excited states of nitrobenzene and o-nitrotoluene. Finally, the dissociation rates and lifetimes of photodissociation of nitrobenzene and o-nitrotoluene were predicted and compared to experimental results.  相似文献   

13.
14.
The photodissociation dynamics of the diazomethyl (HCNN) radical have been studied using fast radical beam photofragment translational spectroscopy. A photofragment yield spectrum was obtained for the range of 25,510-40,820 cm(-1), and photodissociation was shown to occur for energies above 25,600 cm(-1). The only product channel observed was the formation of CH and N2. Fragment translational energy and angular distributions were obtained at several energies in the range covered by the photofragment yield spectrum. The fragment translational energy distributions showed at least two distinct features at energies up to 4.59 eV, and were not well fit by phase space theory at any of the excitation energies studied. A revised C-N bond dissociation energy and heat of formation for HCNN, D0(HC-NN)=1.139+/-0.019 eV and DeltafH0(HCNN)=5.010+/-0.023 eV, were determined.  相似文献   

15.
Lutz S  Meuwly M 《Chemphyschem》2012,13(1):305-313
The photodissociation dynamics of small molecules in the gas and condensed phase is an important source of information for better characterizing intermolecular interactions. Herein, classical molecular dynamics simulations with provisions to follow reactive processes between different electronic states are used to probe the wavelength dependence of product state distributions after laser excitation of ClCN. It is found that the maximum of the rotational excitation distribution P(j) of the CN product shifts to lower j-values with increasing wavelength and the width of the distribution narrows. Both observations are in accord with earlier experiments and provide improvements over previous theoretical treatments of the process with the same interaction potentials. For the reaction in a water droplet, strong quenching of rotational excitation is found.  相似文献   

16.
The dynamics of the 248 nm photodissociation of the CCl(2) molecule have been investigated in a molecular beam experiment. The CCl(2) parent molecule was generated in a molecular beam by pyrolysis of CHCl(3), and both CCl(2) and the CCl photofragment were detected by laser fluorescence excitation. The 248 nm attenuation cross sections was estimated from the reduction of the CCl(2) signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A (2)Delta- X (2)Pi band system. The CCl(X (2)Pi, nu = 0) rotational state distribution was found to be bimodal, with maximum populations at N approximately 10 and 85, and was dependent upon the source backing pressure, and hence upon the internal state distribution of the CCl(2) precursor. The 248 nm photodissociation dynamics appears to involve two separate channels, namely nearly impulsive rotational energy release and predissociation with little rotational energy imparted to the CCl fragment.  相似文献   

17.
The dynamics of photodissociation of acetoxime at 193 nm, leading to the formation of (CH3)2C=N and OH fragments, has been investigated. The nascent OH radicals, which are both rotationally and vibrationally excited, were probed by laser photolysis-laser induced fluorescence technique. OH fragments in both v" = 1 and v" = 0 vibrational states were detected with a ratio of population in the higher to lower level of 0.07+/-0.01. The rotational temperatures of v" = 0 and 1 levels of OH radicals are 2650+/-150 K and 1290+/-20 K, respectively. More than 30% of the available energy, i.e., 115+/-21 kJ mol(-1) is partitioned into the relative translational energy of the fragments. The results of excited electronic state and transition state calculations at the configuration interaction with single electronic excitation level suggest that the dissociation takes place with an exit barrier of approximately 126 kJ mol(-1) at the triplet state (T2) potential energy surface, formed by internal conversions/intersystem crossing from the initially populated S2 state. Using the calculated transition state geometry and its energy, the observed energy distribution pattern can be reproduced by the hybrid model within experimental uncertainties. The presence of an exit barrier is further supported by the observation of N-OH dissociation upon 248 nm excitation, where the relative translational energy of the fragments is found to be approximately 96 kJ mol(-1). The photodissociation dynamics of acetoxime is compared with C-OH dissociation in enols and carboxylic acid and N-OH dissociation in nitrous acid. The observed emission (lambda(max)=430 nm) and the N-OH dissociation dynamics indicate crossing of the initially populated state to an emissive state of acetoxime, which is different from the dissociative state.  相似文献   

18.
Photodissociation dynamics of ketene at 157.6 nm has been investigated using the photofragment translational spectroscopic technique based on photoionization detection using vacuum-ultraviolet synchrotron radiation. Three dissociation channels have been observed: CH2+CO, CH+HCO, and HCCO+H. The product translational energy distributions and angular anisotropy parameters were measured for all three observed dissociation channels, and the relative branching ratios for different channels were also estimated. The experimental results show that the direct C-C bond cleavage (CH2+CO) is the dominant channel, while H migration and elimination channels are very minor. The results in this work show that direct dissociation on excited electronic state is much more significant than the indirect dissociation via the ground state in the ketene photodissociation at 157.6 nm.  相似文献   

19.
Time- and frequency-resolved photoionization of the hydrogen atom product from a jet-cooled electronically excited 2-methylallyl radical, C4H7, provides information on the dissociation dynamics. The measured dissociation rates and kinetic energy release of 2-methylallyl and its isotopologue CD3C3H4 combined with high level ab initio calculations suggests unimolecular dissociation with methylenecyclopropane and hydrogen as the major C-H bond fission channel with no evidence for nonstatistical behavior in dissociation. Other possible dissociation and isomerization pathways are discussed based on the results of the coupled-cluster ab initio calculations.  相似文献   

20.
Dimeric motifs formed by silver(I) carboxylates, illustrated here by the unit Ag2(CF3CO2)2, resemble the well known dimerization of carboxylic acids, i.e. 'H2(RCO2)2', but exhibit greater flexibility, while permitting further elaboration into neutral coordination networks through linkage of the silver centres via ditopic ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号